• Title/Summary/Keyword: Non-linear wave

Search Result 248, Processing Time 0.028 seconds

Analysis for Nonlinear Turbine Effect of Inclined OWC Wave Energy Converter (경사형 진동수주 파력발전장치의 비선형 터빈효과의 분석)

  • Kim, J.S.;Nam, B.W.;Park, S.W.;Kim, K.H.;Shin, S.H.;Hong, K.Y.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.59-60
    • /
    • 2018
  • The oscillating-water-column wave energy converter represents the complex physical characteristics associated with the water column, turbines, generator, and power converter. This study focuses on the derivation of the physical relationship between the water column and turbine based on the 1/ 4 scale model test. The aerodynamic characteristics of the OWC ducted turbine were simulated using an orifice. The turbine effect, a key element in the OWC-chamber performance evaluation, can be represented by the flow rate and pressure drop through the orifice. The turbine effect of OWC-WEC was confirmed to have a non-linear relationship from the measured flow rate and pressure drop in the model test.

  • PDF

Yoke Topology Optimization of the Bias Magnetic System in a Magnetostrictive Sensor (자기변형 센서 바이어스 자기계의 요크 위상최적설계)

  • Kim, Yoon-Young;Kim, Woo-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.923-929
    • /
    • 2004
  • A magnetostrictive sensor is a sensor measuring elastic waves. Because of its unique non-contact measurement feature, the sensor receives more attentions in recent years. These sensors have been mainly used to measure longitudinal and torsional waves in ferromagnetic waveguides, but there increases an interest in using the sensor for flexural wave measurement. Since the performance of the sensor is strongly influenced by the applied bias magnetic field distribution, the design of the bias magnetic system providing the desired magnetic field is critical. The motivation of this investigation is to design a bias magnetic system consisting of electromagnets and yokes and the specific objective is to formulate the design problem as a bias yoke topology optimization. For the formulation, we employ linear magnetic behavior and examine the optimized results for electromagnets located at various locations. After completing the design optimization, we fabricate the prototype of the proposed bias magnetic system, and test its performance through flexural wave measurements.

Dispersion Relation including the Effect of Diffusion for E.M. Wave in Solid-State Plasma (고상 프라즈마내에서의 전자파분산측과 확산효과)

  • Cho, Chul
    • 전기의세계
    • /
    • v.20 no.5
    • /
    • pp.15-18
    • /
    • 1971
  • Up to now, there have been numerous investigations about the effect of diffusion on the wave propagation in gaseous plasmas, but not so much in semiconductor magnetoplasmas. However, currently, it becomes the centor of interest to work with the latter problem, and this paper deals with the dispersion equation including diffusion effect in the latter case to see how diffusion affects the equation in which diffusion term is neglected in the first place, and the analysis is based on the assumption that the plasma can be treated as a hydrodynamical fluid, since, from a macroscopic view point, the plasma interacting with a magnetic field can be considered as a magneto-hydrodynamical fluid, an electrically conducting fluid subjected to electromagnetic force, and the system is linear. The results of the relation and computation show that in the non-streaming case the diffusion terms appear in the equation as perturbation terms and the amplitude of the wave vector changes parabolically with the variation of the angular frequency and the longitudinal modes are observed.

  • PDF

Powering Analysis of Oscillating Foil Moving in Propagating Wave Flow Field (전파하는 파동유장 중 전진하며 동요하는 2차원 날개의 동력해석)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.229-235
    • /
    • 2019
  • In this study, a two-dimensional oscillating foil with forward speed in a propagating wave flow field was considered. The time-mean power to maintain the heaving and pitching motions of the foil was analyzed using the perturbation theory in an ideal fluid. The power, which was a non-linear quantity of the second-order, was expressed in terms of the quadratic transfer functions related to the mutual product of the heaving and pitching motions and incoming vertical flow. The effects of the pivot point and phase difference among the disturbances were studied. The negative power, which indicates energy extraction from the fluid, is shown as an example calculation.

Frequency characteristics of a multiferroic Piezoelectric/LEMV/CFRP/Piezomagnetic composite hollow cylinder under the influence of rotation and hydrostatic stress

  • Selvamani, R.;Mahesh, S.;Ebrahimi, F.
    • Coupled systems mechanics
    • /
    • v.10 no.2
    • /
    • pp.185-198
    • /
    • 2021
  • An analytical model is consider to scrutinize axisymmetric wave propagation in multiferroic hollow cylinder with rotating and initial stressed forces, where a piezomagnetic (PM) material layer is bonded to a piezoelectric (PE) cylinder together by Linear elastic materials with voids. Both distinct material combos are taken into account. Three displacement potential functions are introduced to uncouple the equations of motion, electric and magnetic induction. The numerical calculations are carried out for the non-dimensional frequency by fixing wave number and thickness. The arrived outputs are plotted as the dispersion curves for different layers. The results obtained in this paper can offer significance to the application of PE/PM composite hollow cylinder via LEMV and CFRP layers for the acoustic wave and microwave technologies.

Ultrasonic characterization of exhumed cast iron water pipes

  • Groves, Paul;Cascante, Giovanni;Knight, Mark
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.241-262
    • /
    • 2011
  • Cast iron pipe has been used as a water distribution technology in North America since the early nineteenth century. The first cast iron pipes were made of grey cast iron which was succeeded by ductile iron as a pipe material in the 1940s. These different iron alloys have significantly different microstructures which give rise to distinct mechanical properties. Insight into the non-destructive structural condition assessment of aging pipes can be advantageous in developing mitigation strategies for pipe failures. This paper examines the relationship between the small-strain and large-strain properties of exhumed cast iron water pipes. Nondestructive and destructive testing programs were performed on eight pipes varying in age from 40 to 130 years. The experimental program included microstructure evaluation and ultrasonic, tensile, and flexural testing. New applications of frequency domain analysis techniques including Fourier and wavelet transforms of ultrasonic pulse velocity measurements are presented. A low correlation between wave propagation and large-strain measurements was observed. However, the wave velocities were consistently different between ductile and grey cast iron pipes (14% to 18% difference); the ductile iron pipes showed the smaller variation in wave velocities. Thus, the variation of elastic properties for ductile iron was not enough to define a linear correlation because all the measurements were practically concentrated in single cluster of points. The cross-sectional areas of the specimens tested varied as a result of minor manufacturing defects and levels of corrosion. These variations affect the large strain testing results; but, surface defects have limited effect on wave velocities and may also contribute to the low correlations observed. Lamb waves are typically not considered in the evaluation of ultrasonic pulse velocity. However, Lamb waves were found to contribute significantly to the frequency content of the ultrasonic signals possibly resulting in the poor correlations observed. Therefore, correlations between wave velocities and large strain properties obtained using specimens manufactured in the laboratory must be used with caution in the condition assessment of aged water pipes especially for grey cast iron pipes.

Study of viscoelastic model for harmonic waves in non-homogeneous viscoelastic filaments

  • Kakar, Rajneesh;Kaur, Kanwaljeet;Gupta, Kishan Chand
    • Interaction and multiscale mechanics
    • /
    • v.6 no.1
    • /
    • pp.31-50
    • /
    • 2013
  • A five parameter viscoelastic model is developed to study harmonic waves propagating in the non-homogeneous viscoelastic filaments of varying density. The constitutive relation for five parameter model is first developed and then it is applied for harmonic waves in the specimen. In this study, it is assumed that density, rigidity and viscosity of the specimen i.e., rod are space dependent. The specimen is non-homogeneous, initially unstressed and at rest. The method of non-linear partial differential equation has been used for finding the dispersion equation of harmonic waves in the rods. A simple method is presented for reflections at the free end of the finite non-homogeneous viscoelastic rods. The harmonic wave propagation in viscoelastic rod is also presented numerically with MATLAB.

Calculation of Wave Deformation and Wave Induced Current around an Underwater Shoal by Boussinesq Equation (Boussinesq 방정식을 이용한 수중 천퇴에서의 파랑변형 및 파랑류 계산)

  • Chun Insik;Seong Sangbong;Kim Guidong;Sim Jaeseol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.202-212
    • /
    • 2005
  • In the design of an of offshore structure located near an underwater shoal, the same amount of attention given to the wave height may have to be put to the wave induced current as well since some of the wave energy translates to the current. In the present study, two numerical models each based on the nonlinear Boussinesq equation and the linear mild slope equation are applied to calculate the wave deformation and secondly induced current around a shoal. The underwater shoal in Vincent and briggs' experiment (1989) is used here, and all non-breaking wave conditions of the experiment with various monochromatic and unidirectional or multidirectional spectral wave incidences are concerned. Both numerical models clearly showed wave induced currents symmetrically farmed along the centerline over the shoal. The calculated wave heights along a preset line also generally showed very nice agreements with the experimental values.

Time Series Data Analysis using WaveNet and Walk Forward Validation (WaveNet과 Work Forward Validation을 활용한 시계열 데이터 분석)

  • Yoon, Hyoup-Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • Deep learning is one of the most widely accepted methods for the forecasting of time series data which have the complexity and non-linear behavior. In this paper, we investigate the modification of a state-of-art WaveNet deep learning architecture and walk forward validation (WFV) in order to forecast electric power consumption data 24-hour-ahead. WaveNet originally designed for raw audio uses 1D dilated causal convolution for long-term information. First of all, we propose a modified version of WaveNet which activates real numbers instead of coded integers. Second, this paper provides with the training process with tuning of major hyper-parameters (i.e., input length, batch size, number of WaveNet blocks, dilation rates, and learning rate scheduler). Finally, performance evaluation results show that the prediction methodology based on WFV performs better than on the traditional holdout validation.

Effect of EEG Wave Type on Visual Cortex of Visual Target according to Position of Fixation Point (주시점의 위치에 따른 시 표적이 시피질의 뇌파에 미치는 영향)

  • Kim, Douk-Hoon;Cho, Jin-Wook;Nam, Sang-He
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.101-105
    • /
    • 2000
  • This study was to investigate the effect of EEG wave type on visual cortex of visual target according to position of fixation point on the Korean. Visual evoked potential system used the BIO-Pag and recorded to 586 computer. The illumination was 500 lux and the visual target was red light dot of 3 cm size. The results of the convergence and divergence as follows: The visual stimulation waves on the visual cortex have about 70% of delta wave, about 10% of beta wave, about 9% of theta wave and about 7% of alpha wave respectively. The convergence state was much more appeared the fast wave on the comparative of the divergence. Therefore, the convergence state was much more producted the beta and alpha wave on the comparative of the divergence. On the other hand, on the convergence and divergence, the histogram amplitude of EEG wave appeared almost the non-Gaussian shape. According to the phase analysis of amplitude of EEG wave almost all type was linear shape.

  • PDF