Calculation of Wave Deformation and Wave Induced Current around an Underwater Shoal by Boussinesq Equation

Boussinesq 방정식을 이용한 수중 천퇴에서의 파랑변형 및 파랑류 계산

  • Chun Insik (Department of Civil Engineering, Konkuk University) ;
  • Seong Sangbong (Department of Civil Engineering, Konkuk University) ;
  • Kim Guidong (Department of Civil Engineering, Konkuk University) ;
  • Sim Jaeseol (Coastal and Harbor Engineering Division, Korea Ocean Research and Development Institute)
  • 전인식 (건국대학교 토목공학과) ;
  • 성상봉 (건국대학교 토목공학과) ;
  • 김귀동 (건국대학교 토목공학과) ;
  • 심재설 (한국해양연구원 연안,항만공학연구본부)
  • Published : 2005.09.01

Abstract

In the design of an of offshore structure located near an underwater shoal, the same amount of attention given to the wave height may have to be put to the wave induced current as well since some of the wave energy translates to the current. In the present study, two numerical models each based on the nonlinear Boussinesq equation and the linear mild slope equation are applied to calculate the wave deformation and secondly induced current around a shoal. The underwater shoal in Vincent and briggs' experiment (1989) is used here, and all non-breaking wave conditions of the experiment with various monochromatic and unidirectional or multidirectional spectral wave incidences are concerned. Both numerical models clearly showed wave induced currents symmetrically farmed along the centerline over the shoal. The calculated wave heights along a preset line also generally showed very nice agreements with the experimental values.

수중 천퇴 인근에 해양구조물을 설치하는 경우, 구조물에 작용하는 설계하중을 구하기 위하여 파고뿐만 아니라 천퇴 주변 파랑변형에 의하여 이차적으로 발생된 파랑류를 아울러 고려하여야 한다. 본 연구에서는 천퇴 주변의 파랑변형과 파랑류를 계산하기 위하여 비선형 Boussinesq방정식 모델과 선형 완경사방정식 모델을 각각 적용하였다. 대상 천퇴는 Vincent and Briggs(1989)의 수리실험에서와 동일하며 실험조건은 규칙파, 일방향 또는 다방향 불규칙파 입사를 포함하는 비쇄파조건으로 하였다. 두 수치모델은 공히 천퇴 중심선을 따라 파랑류가 대칭적으로 형성됨을 잘 보여주었다. 그리고 수리실험에서의 파고계측선을 따라 계산된 파고변화는 전체적으로 실험 결과와 잘 일치하였다.

Keywords

References

  1. 전인식 (2000). 쇄파유도류에 의한 유체력의 결정. 한국해양연구원, 93
  2. 전인식, 심재설, 최성진 (2000), 이어도 종합해양과학기지에 대한 설계파력의 검토. II: 쇄파역에서의 유체력. 한국해안.해양공학회지, 12(4), 168-180
  3. 최성진, 심재설, 전인식 (2000). 쇄파역에서의 유체력. 대한토목학회 학술발표회 논문집, 629-632
  4. 한국해양연구원 (1999). 99 이어도 종합해양과학기지 구축사업 보고서. 해양수산부, BSPM 99020-00-1200-2
  5. Borgman, L.E. (1984). Directional spectrum estimation for the gages. Tech. Rep., CHL-97-24, United State Army Corps of Engineers (USACE), Waterway Experiment Station
  6. Kirby, IT., Wei, G and Chen, Q. (1998). FUNWAVE 1.0. CACR-98-06, Center for Applied Coastal Research, University of Delaware
  7. Nwogu, O. (1993). Alternative form of Boussinesq equation for nearshore wave propagation. J. Wtrway., Port, Coast. and Oc. Engrg., ASCE, 119(6),618-638 https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)
  8. Shapiro, R. (1970). Smoothing, filtering and boundary effects. Review of geophysics and space physics, 8(2), 359-386 https://doi.org/10.1029/RG008i002p00359
  9. Vincent, C.L. and Briggs, M.J. (1989). Refraction-diffraction of irregular waves over a mound. J. Wtrway., Port, Coast. and oc, Engrg., ASCE, 115(2), 269-283 https://doi.org/10.1061/(ASCE)0733-950X(1989)115:2(269)
  10. Watanabe, A. and Maruyama, K. (1986). Numerical modeling of nearshore wave field under combined refraction, diffraction and breaking. Coastal Eng. in Japan, 29, 19-39
  11. Wei, G, Kirby, J.T., Grilli, S.T. and Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves, Part 1, highly nonlinear unsteady waves. J. Fluid Mechanics, 294, 71-92 https://doi.org/10.1017/S0022112095002813
  12. Yoon, S., Cho, Y. and Lee, C. (2004). Effects of breaking-induced currents on retraction-diffraction of irregular waves over submerged shoal. Ocean Engineering, 31 , 633-652 https://doi.org/10.1016/j.oceaneng.2003.07.008