• Title/Summary/Keyword: Noise Robust

Search Result 1,308, Processing Time 0.023 seconds

Robust Speaker Identification Using Linear Transformation Optimized for Diagonal Covariance GMM (대각공분산 GMM에 최적인 선형변환을 이용한 강인한 화자식별)

  • Kim, Min-Seok;Yang, Il-Ho;Yu, Ha-Jin
    • MALSORI
    • /
    • no.65
    • /
    • pp.67-80
    • /
    • 2008
  • We have been building a text-independent speaker recognition system that is robust to unknown channel and noise environments. In this paper, we propose a linear transformation to obtain robust features. The transformation is optimized to maximize the distances between the Gaussian mixtures. We use rotation of the axes, to cope with the problem of scaling the transformation matrix. The proposed transformation is similar to PCA or LDA, but can achieve better result in some special cases where PCA and LDA can not work properly. We use YOHO database to evaluate the proposed method and compare the result with PCA and LDA. The results show that the proposed method outperforms all the baseline, PCA and LDA.

  • PDF

An Optimization Procedure for Robust Design (로버스트 설계에 대한 최적화 방안)

  • 권용만;홍연웅
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.4
    • /
    • pp.88-100
    • /
    • 1998
  • Robust design in industry is an a, pp.oach to reducing performance variation of quality characteristic value in products and processes. Taguchi has used the signal-to-noise raio(SN) to achieve the a, pp.opriate set of operating conditions where variablity around target is low in the Taguchi parameter design. Taguchi has dealt with having constraints on both the mean and variability of a characteristic (the dual response problem) by combining information on both mean and variability into an SN. Many Statisticians criticize the Taguchi techniques of analysis, particularly those based on the SN. In this paper we propose a substantially simpler optimization procedure for robust design to solve the dual response problems without resorting to SN. Two examples illustrate this procedure in the two different experimental design(product array, combined array) a, pp.oaches.

  • PDF

A Study on the Design of Robust Simulation Controller of Magnetic Levitation System(I) (자기부상 시스템의 강인한 제어기 설계에 관한 연구(I) -시뮬레이션을 중심으로-)

  • 양주호;김창화;정석권;김영복
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.84-90
    • /
    • 1995
  • The magnetic levitation system has great advantages, such as little friction, no lubrication no noise and so on. The magnetic levitation system need a stabilizing controller because it is a unstable system in natural. This paper presents the robust stabilizing controller design of the magnetic levitation system. The controller which is designed in this paper by $H_{infty}$ control theory is robust servo controller which has zero offset in spite of the model uncertainties. The validity of controller was investigater through the response simulation. In the future, we will use the result of this study at the actual magnetic levitation system.

  • PDF

A Study on the Robust Design for Unconstrained Optimization Problems (제한조건이 없는 최적화 문제의 강건설계에 관한 연구)

  • 이권희;엄인섭;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2825-2836
    • /
    • 1994
  • The engineering optimization has been developed for the automatic design of engineering systems. Since the conventional optimum is determined without considering noise factors, applications to practical problems can be limited. Current design practice tends to account for these noises by the specification of closer tolerances or the use of safety factors. However, these approaches may be very expensive. Thus the consideration on the noises of design variables is needed for optimal design. A method is presented to find robust solutions for unconstrained optimization problems. The method is applied to discrete and continuous variables. The orthogonal array is utilized based on the Taguchi concept. Through mathematical proofs and numerical examples, it is verified that solutions from the suggested method are more insensitive than the conventional optimum within the range of variations for design variables.

유연한 로봇암의 강건진동제어

  • 박형욱;박노철;양현석;박영필;김승호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.68-75
    • /
    • 2000
  • The flexibility of a manipulator inevitably yields vibration at the end effector. In this work, position and vibration control for a flexible robot arm was studied using a separate voice coil type actuator to raise the accuracy and speed of end tip. A flexible robot arm with a tip mass is modeled as an Euler-Bernoulli beam. An $H_$\infty$$ controller is adapted to get a robust control against unmodeled higher-order mode vibration, output sensor noise, and etc. Simulations and experiments show that the modeling of the system is acceptable and robust vibration control is also achieved.

  • PDF

Simultaneous Optimization for Robust Design using Distance and Desirability Function

  • Kwon, Yong-Man
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.685-696
    • /
    • 2001
  • Robust design is an approach to reducing performance variation of response values in products and processes. In the Taguchl parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et. al. (1990) and studied by others. In these studies, only single response variable was considered. We propose how to simultaneously optimize multiple responses when there are correlations among responses, and when we use the combined-array approach to assign control and noise factors. An example is illustrated to show the difference between the Taguchi's product-array approach and the combined-array approach.

  • PDF

HMM-based missing feature reconstruction for robust speech recognition in additive noise environments (가산잡음환경에서 강인음성인식을 위한 은닉 마르코프 모델 기반 손실 특징 복원)

  • Cho, Ji-Won;Park, Hyung-Min
    • Phonetics and Speech Sciences
    • /
    • v.6 no.4
    • /
    • pp.127-132
    • /
    • 2014
  • This paper describes a robust speech recognition technique by reconstructing spectral components mismatched with a training environment. Although the cluster-based reconstruction method can compensate the unreliable components from reliable components in the same spectral vector by assuming an independent, identically distributed Gaussian-mixture process of training spectral vectors, the presented method exploits the temporal dependency of speech to reconstruct the components by introducing a hidden-Markov-model prior which incorporates an internal state transition plausible for an observed spectral vector sequence. The experimental results indicate that the described method can provide temporally consistent reconstruction and further improve recognition performance on average compared to the conventional method.

Analytical Development of a Robust Controller for Smart Structural Systems

  • Park Chul Hue;Hong Seong Il;Park Hyun Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1138-1147
    • /
    • 2005
  • This paper aims at demonstrating the feasibility of active control of beams with a multiobjective state-feedback control technique. The multiobjective state-feedback controller is de­signed on a linear matrix inequality (LMI) approach for the multiobjective synthesis. The design objectives are to achieve a mix of Hoo performance and H2 performance satisfying constraints on the closed-loop pole locations in the face of model uncertainties. The controller is also designed to reject the effects of the noise and external of disturbances. For the theoretical analysis, the governing equation of motion is derived by Hamilton's principle to describe the dynamics of a smart structural system. Numerical examples are presented to demonstrate the effectiveness of the integrated robust controller in damping out the multiple vibration modes of the piezo/beam system.

Robust speed control of induction motor using sliding mode state observer (슬라이딩모드 상태관측기를 이용한 유도전동기의 강인한 속도제어)

  • Yoon, Byung-Do;Kim, Yooo-Ho;Kim, Choon-Sam;Kim, Chan-Ki;Han, Jae-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.280-282
    • /
    • 1994
  • This paper proposes sliding mode state for robust speed control of induction motor. Sliding mode state observer is robust for measurement noise, modeling-error and load disturbance. The pole of sliding mode state observer can be placed at (0,0) in Z-plane for fast response. This method is, namely, deadbeat control. Sliding mode state observer output is discontinuous on a switching hyperplance, that causes harmful effects such as current harmonics and speed oscillation. In this paper, also the reducing method of the chattering of sliding mode state observer output is proposed. The proposed system is digitally implemented with TMS320C31.

  • PDF

Robust seismic waveform inversion using backpropagation algorithm (Hybrid L1/L2 를 이용한 주파수 영역 탄성파 파형역산)

  • Chung, Woo-Keen;Ha, Tae-Young;Shin, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.124-129
    • /
    • 2007
  • For seismic imaging and inversion, the inverted image depends on how we define the objective function. ${\ell}^1$-norm is more robust than ${\ell}^2$-norm. However, it is difficult to apply the Newton-type algorithm directly because the partial derivative for ${\ell^1$-norm has a singularity. In our paper, to overcome the difficulties of singularities, Huber function given by hybrid ${\ell}^1/{\ell}^2$-norm is used. We tested the robustness of our new object function with several noisy data set. Numerical results show that the new objective function is more robust to band limited spiky noise than the conventional object function.

  • PDF