1 |
Acero, A. (1990). Acoustic and Environmental Robustness in Automatic Speech Recognition, PhD. thesis, Dept. of Electrical and Computer Engineering, Carnegie Mellon University, PA.
|
2 |
Raj, B. & Stern, R. M. (2005). Missing feature approaches in speech recognition, IEEE Signal Processing Magazine, vol. 22, 101-116.
|
3 |
Peinado, A. M., Sanchez, V., Segura, J. C., & Perez-Cordoba, J. L. (2001). MMSE-based Channel Mitigation for Distributed Speech Recognition, Proc. EUROSPEECH, 2707-2710
|
4 |
Peinado, A. M., Sanchez, V., Perez-Cordoba, J. L., Segura, J. C., & Rubio, J. (2002). HMM-Based Methods for Channel Error Mitigation in Distributed Speech Recognition, Proc. ICSLP02, 2205-2208.
|
5 |
Borgstrom, B. J. & Alwan A. (2010). HMM-based reconstruction of unreliable spectrographic data for noise robust speech recognition, IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, 1612-1623.
DOI
|
6 |
Huang, X., Acero, A., & Hon, H.-W. (2001). Spoken language processing: a guide to theory, algorithm, and system development, NJ: Prentice-Hall.
|
7 |
Cho, J.-W. & Park, H.-M. (2013). An efficient HMM-based feature enhancement method with filter esimation for reverberant speech recognition, IEEE Signal Processing Letter, vol. 20, 1199-1202.
DOI
|
8 |
Price, P., Fisher, W.M., Bernstein, J., Pallet, D.S.(1988). The DARPA 1000-Word Resource Management Database for Continuous Speech Recognition, Proc. IEEE ICASSP, 651-654
|
9 |
Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., & Woodland, P. (2006). The HTK book, Cambridge, UK: Cambridge University Press.
|
10 |
Varga, A., Steeneken, H.J. (1993) Assessment for automatic speech recognition: 2. In: NOISEX 1992: A Database and anExpeiment to Study the Effect of Additive Noise on Speech Recognition Systems. Speech Comm., vol. 12, 247-251.
DOI
ScienceOn
|
11 |
Sound Jay. www.soundjay.com.
|