• Title/Summary/Keyword: Noise Robust

Search Result 1,308, Processing Time 0.025 seconds

An algorithm for pahse detection using weighting function and the design of a phase tracking loop (가중치 함수를 이용한 위상 검출 알고리즘과 위상 추적 루프의 설계)

  • 이명환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2197-2210
    • /
    • 1998
  • In the grand alliance (GA) HDTV receiver, a coherent detection is empolyed for coherent demodulation of vestigial side-band (VSB) signal by using frequency and phaselocked loop(FPLL) operating on the pilot carrier. Additional phase tracking loop (PTL) employed to track out phase noise that has not been removed by the FPLL in theGA system. In this paper, we propose an algorithm for phase detection which utilizes a weighting function. The simplest implementation of the proposed algorithm using te sign of the Q channel component can be tractable by imposing a phase detection gain to the loop gain. It is obserbed that the propsoed algorithm has a robust characteristic against the performance of the digital filters used for Q channel estimation. A second goal of this paper is to introduce a gain control algorithm for the PTL in order to provide an effective implementation of the proposed phase detection algorithm. And we design the PTL through the realization of the simplified digital filter for H/W reduction. The proposed algorithms and the designed PTL are evaluated by computer simulation. In spite of using the simplified H/W structure, simulation results show that the proposed algorithms outperform the coventional PTL algorithms in the phase detection and tracking performance.

  • PDF

Positioning Accuracy on Robot Self-localization by Real-time Indoor Positioning System with SS Ultrasonic Waves

  • Suzuki, Akimasa;Kumakura, Ken;Tomizuka, Daisuke;Hagiwara, Yoshinobu;Kim, Youngbok;Choi, Yongwoon
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.100-111
    • /
    • 2013
  • Indoor real-time positioning for multiple targets is required to realize human-robot symbiosis. This study firstly presents positioning accuracy on an autonomous mobile robot controlled by 3-D coordinates that is obtained by a real-time indoor positioning system with spread spectrum (SS) ultrasonic signals communicated by code-division multiple access. Although many positioning systems have been investigated, the positioning system with the SS ultrasonic signals can measure identified multiple 3-D positions in every 70 ms with noise tolerance and error within 100 mm. This system is also robust to occlusion and environmental changes. However, thus far, the positioning errors in an autonomous mobile robot, controlled by these systems using the SS ultrasonic signals, have not been evaluated as an experimental study. Therefore, a positioning experiment for trajectory control is conducted using an autonomous mobile robot and our positioning system. The effectiveness of this positioning method for robot self-localization is shown, from this experiment, because the average control error between the target position and the robot's position at 29 mm is obtained.

Accurate Sub-1 V CMOS Bandgap Voltage Reference with PSRR of -118 dB

  • Abbasizadeh, Hamed;Cho, Sung-Hun;Yoo, Sang-Sun;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.528-533
    • /
    • 2016
  • A low voltage high PSRR CMOS Bandgap circuit capable of generating a stable voltage of less than 1 V (0.8 V and 0.5 V) robust to Process, Voltage and Temperature (PVT) variations is proposed. The high PSRR of the circuit is guaranteed by a low-voltage current mode regulator at the central aspect of the bandgap circuitry, which isolates the bandgap voltage from power supply variations and noise. The isolating current mirrors create an internal regulated voltage $V_{reg}$ for the BG core and Op-Amp rather than the VDD. These current mirrors reduce the impact of supply voltage variations. The proposed circuit is implemented in a $0.35{\mu}m$ CMOS technology. The BGR circuit occupies $0.024mm^2$ of the die area and consumes $200{\mu}W$ from a 5 V supply voltage at room temperature. Experimental results demonstrate that the PSRR of the voltage reference achieved -118 dB at frequencies up to 1 kHz and -55 dB at 1 MHz without additional circuits for the curvature compensation. A temperature coefficient of $60 ppm/^{\circ}C$ is obtained in the range of -40 to $120^{\circ}C$.

Improved Physical Layer Implementation of VANETs

  • Khan, Latif Ullah;Khattak, M. Irfan;Khan, Naeem;Khan, Atif Sardar;Shafi, M.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.142-152
    • /
    • 2014
  • Vehicular Ad-hoc Networks (VANETs) are comprised of wireless mobile nodes characterized by a randomly changing topology, high mobility, availability of geographic position, and fewer power constraints. Orthogonal Frequency Division Multiplexing (OFDM) is a promising candidate for the physical layer of VANET because of the inherent characteristics of the spectral efficiency and robustness to channel impairments. The susceptibility of OFDM to Inter-Carrier Interference (ICI) is a challenging issue. The high mobility of nodes in VANET causes higher Doppler shifts, which results in ICI in the OFDM system. In this paper, a frequency domain com-btype channel estimation was used to cancel out ICI. The channel frequency response at the pilot tones was estimated using a Least Square (LS) estimator. An efficient interpolation technique is required to estimate the channel at the data tones with low interpolation error. This paper proposes a robust interpolation technique to estimate the channel frequency response at the data subcarriers. The channel induced noise tended to degrade the Bit Error Rate (BER) performance of the system. Parallel concatenated Convolutional codes were used for error correction. At the decoding end, different decoding algorithms were considered for the component decoders of the iterative Turbo decoder. A performance and complexity comparison among the various decoding algorithms was also carried out.

A Pattern Recognition Based on Co-occurrence among Median Local Binary Patterns (중간값 국소이진패턴 사이의 동시발생 빈도 기반 패턴인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.316-320
    • /
    • 2016
  • In this paper, we presents a pattern recognition by considering the spatial co-occurrence among micro-patterns of texture images. The micro-patterns of texture image have been extracted by local binary pattern based on median(MLBP) of block image, and the recognition process is based on co-occurrence among MLBPs. The MLBP is applied not only to consider the local character but also analyze the pattern in order to be robust noise, and spatial co-occurrence is also applied to improve the recognition performance by considering the global space of image. The proposed method has been applied to recognized 17 RGB images of 120*120 pixels from Mayang texture image based on Euclidean distance. The experimental results show that the proposed method has a texture recognition performance.

Boom Angle Detection Signal Pre-processing System Design for Wheel Loader (휠로더 붐각도 검출을 위한 신호전처리 시스템 설계)

  • Kim, Young Bin;Ryu, Conan K.R.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.452-455
    • /
    • 2018
  • Wheel loader performs digging and dumping tasks using boom and bucket. The operation of the wheel loader equipment has a lot of repetitive tasks and the working environment is poor, but only by hand by man. Recently, demands for applying unmanned automated systems are increasing more and more in electrical components. For automated systems, accurate angle detection is indispensable for stable control. This paper proposes a signal processing system for precise angular control with noise robust features. As a result of implementing the proposed system and applying it to the wheel loader boom angle system, it was possible to detect an angle change of about 0.1 degree.

  • PDF

RCPT Code Design for Video Transmission (동영상 전송을 위한 RCPT 코드의 설계)

  • 이창우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.960-966
    • /
    • 2000
  • It is essential to develop the robust video transmission system over wireless channel, since the effect of the noise and the interference to compressed video may be fatal. In this paper, we have designed turbo code, which is adequate for the transmission of video and analyzed the performance of that. Especially, we have focused the rate compatible punctured turbo(RCPT) code, which has rate compatible(RC) property for unequal error protection(UEP). It has been shown through computer simulation that the turbo code with helical interleaver yields better performance than those with other interleavers when the size of the interleaver is not large.

  • PDF

Performance Analysis of Linearly Constrained, Modified MMSE Detection for DS-CDMA Systems in Fading Channels (페이딩 채널에서 DS-CDMA 시스템을 위한 선형제약 변형 MMSE 검출의 성능 해석)

  • Lee Seo young;Kim Seong Rag;Lim Jong Seul;Ann Seong Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1159-1166
    • /
    • 2004
  • This paper follows up the previous work on the linearly constrained, modified minimum mean-squared error(MMSE) detection for direct-sequence code-division multiple-access DS-CDMA) systems in fading channels. We find a condition to avoid the breakdown of joint modified MMSE detection and pilot symbol-aided channel estimation (PSACE). The linearly constrained, modified MMSE solution is theoretically shown to be robust against time variations in Rayleigh fading channels. This fact is consistent with the simulation results. We also show that under some conditions the linearly constrained, modified MMSE detection maximizes the output signal-to-interference-plus-noise ratio.(SINR)

Beamforming Optimization for Multiuser Two-Tier Networks

  • Jeong, Young-Min;Quek, Tony Q.S.;Shin, Hyun-Dong
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.327-338
    • /
    • 2011
  • With the incitation to reduce power consumption and the aggressive reuse of spectral resources, there is an inevitable trend towards the deployment of small-cell networks by decomposing a traditional single-tier network into a multi-tier network with very high throughput per network area. However, this cell size reduction increases the complexity of network operation and the severity of cross-tier interference. In this paper, we consider a downlink two-tier network comprising of a multiple-antenna macrocell base station and a single femtocell access point, each serving multiples users with a single antenna. In this scenario, we treat the following beamforming optimization problems: i) Total transmit power minimization problem; ii) mean-square error balancing problem; and iii) interference power minimization problem. In the presence of perfect channel state information (CSI), we formulate the optimization algorithms in a centralized manner and determine the optimal beamformers using standard convex optimization techniques. In addition, we propose semi-decentralized algorithms to overcome the drawback of centralized design by introducing the signal-to-leakage plus noise ratio criteria. Taking into account imperfect CSI for both centralized and semi-decentralized approaches, we also propose robust algorithms tailored by the worst-case design to mitigate the effect of channel uncertainty. Finally, numerical results are presented to validate our proposed algorithms.

Precision Speed Control of PMSM Using Neural Network Disturbance Observer and Parameter Compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀속도제어)

  • Go, Jong-Seon;Lee, Yong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.573-580
    • /
    • 2002
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper.