최근 IoT 기술과 AI의 발전에 따라 다양한 분야에서 무인화와 자동화가 진행되고 있으며, 사물인식과 객체분류 등 자동화의 기반이 되는 영상처리에 대한 관심이 높아지고 있다. 영상처리 과정에서 잡음 제거는 영상의 품질 또는 시스템의 정확성과 신뢰성에 큰 영향을 미치는 과정으로 다양한 연구가 진행되고 있으나, 영상에서 임펄스 잡음의 밀도가 높은 영역에 대한 영상을 복원하기 어렵다는 문제점이 있다. 따라서 본 논문은 영상에서 임펄스 잡음 훼손된 영역을 복원하기 위해 부분 마스크와 라그랑지 보간법에 기반한 필터 알고리즘을 제안한다. 제안한 알고리즘은 필터링 마스크와 잡음 추정치를 서로 비교하여 필터링 과정을 스위칭하였으며, 영상의 저주파 및 고주파 성분에 따라 퍼지 가중치를 계산하여 영상을 복원하였다.
현대 사회는 4차 산업혁명과 IoT 기술의 발전으로 폭넓은 분야에 다양한 디지털 기기들이 보급되고 있다. 하지만 영상을 획득하거나 전송하는 과정 등에서 잡음이 발생하여 정보를 훼손할 뿐 아니라, 시스템에 영향을 끼쳐 오류와 잘못된 동작을 일으킨다. 영상 잡음 중 대표적인 잡음으로 AWGN이 있다. 잡음을 제거하기 위한 방법으로 선행연구가 진행되어져 왔고 그 중 대표적인 방법으로 AF, A-TMF, MF 등이 있다. 기존의 필터들은 영상의 특성을 고려하기 어려워 고주파 성분이 많은 영역에서는 스무딩 현상이 발생한다는 단점이 있다. 따라서 제안한 알고리즘은 고주파영역에서도 효과적으로 잡음을 제거하기 위해 표준편차 분포도를 구한 후, 커브 피팅 방식을 이용한 라플라스 분포의 확률밀도함수 가중치를 적용하여 최종 출력을 구한다.
Communications for Statistical Applications and Methods
/
제29권1호
/
pp.27-40
/
2022
In this paper, the focus on the removal noise in the binary image based on the variational Bayesian method with the Ising model. The observation and the latent variable are the degraded image and the original image, respectively. The posterior distribution is built using the Markov random field and the Ising model. Estimating the posterior distribution is the same as reconstructing a degraded image. MCMC and variational Bayesian inference are two methods for estimating the posterior distribution. However, for the sake of computing efficiency, we adapt the variational technique. When the image is restored, the iterative method is used to solve the recursive problem. Since there are three model parameters in this paper, restoration is implemented using the VECM algorithm to find appropriate parameters in the current state. Finally, the restoration results are shown which have maximum peak signal-to-noise ratio (PSNR) and evidence lower bound (ELBO).
본 논문에서는 컨볼루션 신경망을 이용하여 다시점 비디오의 중간 시점 양자화 노이즈를 제거하는 방안을 제안한다. 다시점 비디오에서 중간 시점의 화질을 개선하기 위한 방안으로 인접 시점의 정보를 활용하였다. 제안하는 알고리즘을 적용하여 중간 시정에서의 양자화 노이즈를 제거할 수 있으며, 화질 (PSNR, peak-to-noise ratio)를 개선할 수 있다. 인접 시접의 정보를 활용할 경우, 일반적인 양자화 노이즈에 대해서 학습한 결과 대비 성능 향상을 제공한다.
CT 촬영 시 방사선량을 줄이면 피폭 위험성을 낮출 수 있으나, 영상 해상도가 크게 저하 될 뿐아니라 잡음(noise) 발생으로 인해 진단의 효용성이 떨어진다. 따라서, CT 영상에서의 잡음제거는 영상복원 분야에 있어 매우 중요하고 필수적인 처리 과정이다. 영상 영역에서 잡음과 원래 신호를 분리하여 잡음만을 제거하는 것은 한계가 있다. 본 논문에서는 웨이블릿 변환 기반 GAN 모델 즉, WT-GAN(wavelet transform-based GAN) 모델을 이용하여 CT 영상에서 효과적으로 잡음 제거하고자 한다. 여기서 사용된 GAN 모델은 U-Net 구조의 생성자와 PatchGAN 구조의 판별자를 통해 잡음제거 영상을 생성한다. 본 논문에서 제안된 WT-GAN 모델의 성능 평가를 위해 다양한 잡음, 즉, 가우시안 잡음(Gaussian noise), 포아송 잡음 (Poisson noise) 그리고 스펙클 잡음 (speckle noise)에 의해 훼손된 CT 영상을 대상으로 실험하였다. 성능 실험 결과, WT-GAN 모델은 전통적인 필터 즉, BM3D 필터뿐만 아니라 기존의 딥러닝 모델인 DnCNN, CDAE 모형 그리고 U-Net GAN 모형보다 정성적이고, 정량적인 척도 즉, PSNR (Peak Signal-to-Noise Ratio) 그리고 SSIM (Structural Similarity Index Measure) 면에서 우수한 결과를 보였다.
디지털 영상처리는 의료산업, 위성사진, 공장자동화 영상인식 등 넓고 다양한 분양에 활용되고 있다. 하지만 이러한 영상 데이터는 처리, 전송, 저장하는 과정에서 여러 외부 원인에 의해 열화가 발생한다. 영상에 첨가되는 잡음에는 AWGN, salt and pepper 잡음이 대표적이다. AWGN에 훼손된 영상을 복원하기 위한 공간영역 방법에는 MF, CWMF, AWMF 등이 있으며, 기존의 방법들은 에지와 같은 상세 정보를 훼손하는 특성이 있다. 따라서 본 논문에서는 AWGN 환경에서 국부 마스크의 에지 크기에 따라 화소 방향에 따른 가중치 필터, 공간 가중치 필터 및 평균 필터의 가중치를 다르게 적용하는 알고리즘을 제안하였다. 그리고 제안한 알고리즘의 우수성을 입증하기 위해, PSNR을 사용하여 기존의 방법들과 그 성능을 비교하였다.
x선 영상은 각종 의료 검진 분야와 보안검사에 널리 이용되고 있다. 하지만 대부분의 x선 영상은 잡음을 포함하고 있으며 이러한 잡음은 x선 영상분석에 방해가 되기 때문에 x선 영상의 잡음을 제거할 필요가 있다. 본 논문은 화소값 가중치와 화소 거리 가중치를 이용하여 x선 영상의 잡음을 제거하는 방법을 제안한다. 제안하는 알고리즘은 먼저 양방향 필터를 이용하여 x선 영상의 노이즈를 1차적으로 제거하고 원본 x선 영상의 경계 영역을 추정한다. 그 후 현재 화소가 경계 영역에 속한다면 해당화소를 포함하는 $3{\times}3$ 영역의 화소들에 대한 원본화소와 노이즈제거 화소를 이용하여 가중치를 구하고 경계 화소값 결정을 위한 비용계산을 수행한다. 그 후 가장 작은 경계 화소값 결정 비용을 가지는 화소 값을 결과영상의 화소값으로 정한다. 제안하는 알고리즘은 PSNR 및 주관적 화질 비교에서 우수한 성능을 보였다.
In this paper, a single LRF has been used to produce a 3D map for the mobile robot navigation. The 2D laser scanners are used for mobile robots navigation, where the laser scanner is applied to detect a certain level of area by the straight beam. Therefore it is limited to the usages of 2D obstacle detection and avoidance. In this research, it is designed to complement a mobile robot system to move up and down a single LRF along the yaw axis. During the up and down motion, the 2D data are stacked and manipulated to build a 3D map. Often a single LRF data are mixed with Gaussian and impulse noises. The impulse noises are removed out by the hybrid median filter designed in this research. The 2D data which are improved by deleting the impulse noises are layered to build the 3D map. Removing impulse noises while preserving the boundary is a main advantages of the hybrid median filter which has been used widely to improve the quality of images. The effectiveness of this hybrid median filter for rejecting the impulse noises has been verified through the real experiments. The performance of the hybrid median filter is evaluated in terms of PSNR (Peak Signal to Noise Ratio) and the processing time.
디지털 영상 매체 및 지능형 시스템에 대한 관심이 급격히 증가함에 따라 보안, 인공지능 등 다양한 분야에서 영상 정보를 이용한 기술들을 접목해 사용하고 있다. 디지털 영상 처리 중 발생하는 임펄스 잡음은 영상의 화질을 저하시켜 정보의 신뢰성을 떨어뜨리기 때문에 필터를 통한 제거가 필요하다. 이미 잘 알려진 선행된 방식으로 SMF, AWMF, MDBUTMF가 있지만 이들 모두 알고리즘 자체의 문제로 유효한 화소의 정보의 손실이 크고 오염도가 큰 환경에서 원활하지 못한 필터링을 이루는 한계를 가진다. 따라서 본 논문은 마스크 내에 존재하는 가장 근접한 유효 화소를 탐색함으로써 정보의 신뢰도를 반영한 가중치를 적용하는 메디안 필터 알고리즘을 설계한다. 성능 평가를 위해 PSNR과 확대영상을 사용하여 본 알고리즘과 선행된 알고리즘을 비교, 분석하였다.
4차 산업혁명의 발전에 따라 통신 및 데이터 처리의 중요성이 높아지고 있으며, 이에 따라 장비의 정확성과 신뢰성에 직접적인 영향을 미치는 영상 및 데이터 처리의 중요성 또한 증가하고 있다. 본 논문에서는 영상의 주파수 성분의 변화에 적응하며 AWGN을 제거하기 위해 표준편차와 추정치의 유추를 통해 최종 출력을 산출하는 알고리즘을 제안하였다. 제안한 알고리즘은 마스크 성분의 표준편차를 통해 유효 화소 범위를 설정하여 추정치를 구하며, 가중치를 적용한 후 필터의 출력에 가감하여 최종 출력을 계산한다. 그리고 제안하는 알고리즘의 성능 평가를 위해 시뮬레이션을 통해 기존 방법과 비교 분석하였으며, 시뮬레이션 결과 영상의 중요 특성을 보존하며 효율적인 잡음 제거 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.