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Abstract
In this paper, the focus on the removal noise in the binary image based on the variational Bayesian method

with the Ising model. The observation and the latent variable are the degraded image and the original image,
respectively. The posterior distribution is built using the Markov random field and the Ising model. Estimating the
posterior distribution is the same as reconstructing a degraded image. MCMC and variational Bayesian inference
are two methods for estimating the posterior distribution. However, for the sake of computing efficiency, we adapt
the variational technique. When the image is restored, the iterative method is used to solve the recursive problem.
Since there are three model parameters in this paper, restoration is implemented using the VECM algorithm to
find appropriate parameters in the current state. Finally, the restoration results are shown which have maximum
peak signal-to-noise ratio (PSNR) and evidence lower bound (ELBO).

Keywords: variational Bayesian inference, Ising model, expectation maximization algorithm, bi-
nary image restoration

1. Introduction

In the past decades, a lot of image analysis methods have been proposed. There have been many
attempts to eliminate noise. Geman and Geman (1984) restored a degraded image having white Gaus-
sian noise and blur. Also, Besag et al. (1991) introduced the Bayesian image restoration. Geman and
Geman (1984) and Besag et al. (1991) constructed the posterior distribution considering the degraded
image as an observation and the original image as a latent variable which should be estimated. They
used the Gibbs sampler to estimate the posterior distribution. Besag (1986) implemented the image
restoration using another method, Iterative Conditional Modes (ICM).

The Markov Chain Monte Carlo (MCMC; Smith and Roberts, 1993) such as the Gibbs sam-
pler (Gelfand and Smith, 1990; Casella and George, 1992) and the Metropolis-Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970) have been used to estimate the posterior distribution. The
MCMC method constructs an ergodic Markov Chain on z whose stationary distribution is the poste-
rior density p(z|y) where z is a latent variable and y is a given data. TIAN et al. (2009) suggested the
gray scale image restoration algorithm using the adaptive MCMC particle filters to reduce the com-
putational cost. However, the MCMC based methods take time and require some conditions. Also,
because the image is quite a big data set, the computational cost is extremely large. Thus, sometimes
it is not suitable to use the MCMC methods to estimate the posterior density in the image analysis.
Therefore, we use the Variational Inference mainly used in Machine Learning for approximating the
posterior density p(z|y).
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Jordan et al. (1999) suggested a different method called variational inference (VI) (also called
variational Bayesian inference) based on a graphical model. The variational inference transforms the
inference problem to the optimization problem by minimizing the KL-divergence between the true
posterior and the variational density. Therefore, VI algorithm solves the optimization problem. Using
the VI, we can estimate the true posterior density more cheaply. Also, Blei et al. (2017) reviewed the
VI for statisticians and Zhang et al. (2019) reviewed the advanced version of VI such as stochastic,
black box and amortized VI.

In the variational Bayesian inference (VBI), the main goal is to find the variational density, min-
imizing the KL-divergence between the true posterior distribution and the candidate approximated
density which is assumed to satisfy the mean field assumption (Parisi, 1988). In addition, minimiz-
ing the KL-divergence is equal to maximizing the evidence lower bound (ELBO), which is the main
objective function in VBI.

In this paper, we use the simple Ising model to describe the binary image structure and apply the
variational inference to get an approximated posterior distribution. Also, to estimate the model param-
eters properly, we adapt an empirical Bayes method (Casella, 2001) using the expectation maximiza-
tion (EM) algorithm (Dempster et al., 1977). That is, maximizing the Q function in the EM algorithm
is equal to maximizing ELBO and minimizing KL-divergence. You can see the EM algorithm from a
Bayesian perspective in Friedman (2013). However, updating multiple parameters simultaneously is
not feasible. Thus, we use the expectation/conditional-maximization (ECM) algorithm suggested by
Meng and Rubin (1993). Since we use the VI to approximate the posterior distribution, we adapt the
variational version of the EM algorithm and you can see the variational EM algorithm for Gaussian
mixture problems in Nasios and Bors (2006).

The remainder of this paper is organized as follows. In Chapter 2, we describe the Ising model
and its distribution called Boltzmann-Gibbs distribution. Also, there is an assumption for the original
image and the degraded image to construct the posterior density. In Chapter 3, we introduce the vari-
ational Bayesian inference (VBI), the mean field approximation and the coordinate ascent variational
inference (CAVI) algorithm to find the variational density. In Chapter 4, we calculate the variational
density and the ELBO by quoting from Bishop (2006). Since the model parameters affect the result
of restoration, we use the VI version of the EM algorithm (VEM) to estimate the parameters properly.
Also, for each time a restoration is implemented, the value of optimal parameter is changed. There-
fore, the EM algorithm was used for each restoration. Since there are three model parameters, we also
use an ECM algorithm in Chapter 5. The entire restoration algorithm and results are shown in Chapter
6 with two measurements, peak signal-to-noise ratio (PSNR) and ELBO.

2. Reviews of Ising model and Markov random field (MRF)

An Ising model is a well-known model in statistical mechanics that consists of binary variables. It is
one of the simplest mathematical models of ferromagnetism. The value of each variable represents
magnetic dipole moments of atomic spins, which can be up(+1) or down(-1), and each spin interacts
with its neighborhood spin status. If the spins have the same state, then the energy is low.

The Ising model uses the nearest neighborhood system, that is, each spin affects other spin right
beside it. The total energy of the Ising system is given by

E = h
∑

i

S i − β
∑
{i, j}

S iS j, (2.1)

where h and β are constants and the bracket sign {i, j} represents that S i and S j are neighborhoods for
each other. S i means the spin state of site i.
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h is the interaction constant between S i and an external field. Because the spins are interacting
with each other in the Ising model, β represents the constant between S i and S j for all i, j. Then the
probability density of the Ising model is

P(S ) =
1
Z

exp
(
−

1
kT

E
)
, (2.2)

which is called Boltzmann-Gibbs distribution where Z is a normalizing constant for the distribution
called partition function, k is a Boltzmann constant, E is defined in (2.1) and T is a temperature.

Since the binary image is used, we consider the image as a two-dimensional Ising model. Let S
be a set of values of pixels {s1, . . . , sN} where N is the total number of pixels. Then, the white and
black points represent the up (+1) and down (–1) status, respectively.

We suppose that the original image is the Markov random field (MRF) with the nearest neighbor-
hood system. The MRF is one of the graphical models composed with a clique and the neighborhood
system. A clique is a set of nodes affecting each other and their functional relationship is called the
clique potential. The joint distribution of the MRF equals the total product of clique potentials divided
by the partition function. Let Xi j denote the intensity value of the original image at (i, j) on N1 × N2
lattice L and Ni j be the neighborhood of Xi j. Besag (1974) suggested the following three conditions
for P(X) as conditions becoming an MRF,

1) Positivity : P(Xi j) > 0 ∀Xi j .

2) Markovianity : P(xi j|all points in lattice L except (i, j)) = P(xi j|Ni j), ∀(i, j) ∈ L.

3) Homogeneity : P(xi j|Ni j) depends on the value of the neighborhood, not the location of it.

That is, P(xi j|Ni j) = P(xkl|Nkl) if the configuration of Ni j and Nkl is the same.

The MRF is equal to the Gibbs Random Field (GRF) by the Hammersley-Clifford theorem if they
have the same neighborhood system. The GRF means that the distribution of the two-dimensional
lattice follows the Gibbs distribution in (2.2). Then, the joint distribution of MRF is given by

P(X) =

N1∏
i=1

N2∏
j=1

P(Xi j|Ni j) =

N1∏
i=1

N2∏
j=1

1
Zi j

exp
(
−

1
kT

Ei j

)
, (2.3)

where i, j denote the index of the row and column of N1 × N2 lattice L and Ei j represents the energy
of Xi j interacting with its neighborhood.

3. Variational Bayesian inference (VBI)

We consider the distribution of X as prior and the clique potential between X and Y as a likelihood
function. Then, we calculate the posterior density of X given Y by Bayes rule.

P(X|Y) =
P(Y |X)P(X)

P(Y)
,

, where P(Y) =
∫

P(X,Y)dX, is called evidence (or marginal likelihood). However, for many models,
the evidence is unavailable in closed form or requires exponential time to compute. There are two
main ways of estimating the true posterior distribution without calculating the evidence. The first one
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is the MCMC algorithm sampling from the Markov Chain. It is theoretically certain that the gener-
ated samples follow the true posterior, but it should satisfy some conditions and is computationally
expensive. The second way is the VBI approximating the true posterior density by minimizing the
KL-divergence. See Blei et al. (2017) for more details of the VBI.

3.1. Kullback-Leibler (KL) divergence

The VBI generalizes the idea behind the Laplace approximation used to find the posterior density
(Tierney and Kadane, 1986). In the VBI, we wish to find an approximated density that is closest to
the true posterior density with respect to the KL-divergence as follows,

KL(q(x)||p(x|y)) =
∑

x

q(x) log
q(x)

p(x|y)
(3.1)

and x is a latent variable and y is an observed data. The KL-divergence is a measurement of the
difference between the functions of q(x) and p(x|y).

Let W be a family of candidates q’s which approximate the posterior density. The VBI finds the
optimal q∗ which minimizes the KL-divergence. That is,

q∗(x) = arg
q(x)

min KL (q(x)||p(x|y)) .

From equation (3.1),

KL(q(x)||p(x|y)) =
∑

x

q(x) log
q(x)

p(x|y)

=
∑

x

q(x) log
q(x)p(y)
p(x, y)

=
∑

x

q(x) log q(x) +
∑

x

q(x) log p(y) −
∑

x

q(x) log p(x, y)

= Eq(x)
[
log q(x)

]
− Eq(x)

[
log p(x, y)

]
+ log p(y), (3.2)

where Eq(x)[h(x)] denotes the expectation of h(x) with respect to q(x).
Define,

ELBO(q) = Eq(x)[log p(x, y)] − Eq(x)[log q(x)]. (3.3)

Here, ELBO(q) is called the evidence lower bound (ELBO). Then, the ELBO(q) in (3.3) can be
written as,

ELBO(q) = Eq(x)[log p(y|x)] − KL(q(x)||p(x)).

Therefore, minimizing the KL-divergence is equal to maximizing the ELBO. We can rewrite the
KL-divergence with respect to log p(y).

log p(y) = Eq(x)[log p(x, y)] − Eq(x)[log q(x)] + KL(q(x)||p(x|y))
= ELBO(q) + KL (q(x)||p(x|y)) . (3.4)

Since KL(·) ≥ 0, it follows from (3.4) that the ELBO is lower bound for the evidence.
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Figure 1: Graphical Representation of X and Y .

3.2. Mean field approximation

We described the ELBO in Section 3.1, which is the main objective function of the VBI. The goal
of the VBI is to find the best candidate from the variational family W. If the variational family
is complex, the optimization problem is more difficult. To simplify the optimization problem, we
employ the Mean field approximation suggested by Peterson and Anderson (1987).

The Mean field approximation means that the latent variables are mutually independent.

q(x) =

N∏
i=1

qi(xi). (3.5)

Each latent variable xi is governed by its variational factor qi(xi). We choose these variational
factors to maximize the ELBO.

The mean field approximation is a model for the variational density. The observed data y does
not appear in equation (3.5). Thus, by the mean field approximation, it becomes easy to solve the
optimization problem.

3.3. Coordinate ascent variational inference

Using the ELBO and the Mean field approximation, simplifies the optimization problem. Bishop
(2006) introduced the coordinate ascent variational inference (CAVI) algorithm. The CAVI repeatedly
optimizes each factor in the mean field variational density, while holding the other factors constant.

Consider the ith latent variable xi. We can rewrite the ELBO in equation (3.3) as a function of ith

latent factor qi(xi) using the Mean field approximation. It follows from Blei et al. (2017) that

ELBO(qi) = Ei
[
E−i

[
log p(xi, x−i, y)

]]
− Ei

[
log qi(xi)

]
+ const, (3.6)

where E−i denotes the expectation, except for the ith latent variable, and Ei denotes the expectation
for the ith latent variable.

The ELBO in (3.6) takes the form of the negative KL-divergence between qi(xi) and E−i[log p(xi, x−i, y)].
Therefore, the variational density q∗i that maximizes the ELBO is given by

q∗i (xi) ∝ exp
(
E−i

[
log p(x, y)

])
. (3.7)

4. The proposed model and its variational Bayesian inference

4.1. Simple Ising model

We suppose that the original image X is a MRF with the nearest neighborhood and use the Ising model
in Chapter 2. Figure 1 shows the relationship between the original image X and observation Y . The
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white circles represent the original image X and the grey circles represent the degraded image Y . In
Figure 1, we see that the original image X has a connection for the nearest nodes and the degraded
image Y has a connection only with corresponding X. Thus, the clique potential between X and Y
consists of two nodes (xi, yi) for i = 1, . . . ,N.

We propose the simple Ising model from Bishop (2006) as follows,

p(x, y; h, β, η) ∝ exp

β N∑
i=1

xi

∑
j∈Ni

x j + η

N∑
i=1

xiyi − h
N∑

i=1

xi

 , (4.1)

where xi and yi are either –1 or +1 and η, β > 0. Here, y is an observed data and x is a latent variable
(actually, unknown true value).

Note that the Hammersley-Clifford theorem provides a formula for the joint distribution of MRF
in terms of energy function of the Ising model. Thus, the prior distribution of X can be regarded as
part of the right-hand side of equation (4.1), which is a function of only xi’s.

P(X) =

N1∏
i=1

N2∏
j=1

P(Xi j|Ni j)

∝

N1∏
i=1

N2∏
j=1

exp(−Ei j)

∝ exp

−h
N∑

i=1

xi + β

N∑
i=1

xi

∑
j∈Ni

x j

 , (4.2)

where Ei j represents the energy function at Xi j with its neighborhood Ni j in N1 × N2 lattice L and for
the simplicity of notation, we combine the index of row and column. In addition, N represents the
total number of nodes. Therefore, from (4.1), the likelihood function can be expressed as

p(y|x; η) ∝ exp

η N∑
i=1

xiyi

 . (4.3)

4.2. Variational Bayesian inference for simple Ising model

Using equations (4.2) and (4.3), we compute the variational density q∗ by substituting equation (4.1)
for equation (3.7). From equation (3.7) and (4.1),

log q∗i (xi) = E−i[log p(x, y; θ)]

∝ E−i

η N∑
i=1

xiyi + β

N∑
i=1

xi

∑
j∈Ni

x j − h
N∑

i=1

xi


∝ E−i

ηxiyi + βxi

∑
j∈Ni

x j − hxi


∝ ηxiyi + βxi

∑
j∈Ni

µ j − hxi, (4.4)
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where θ = (h, β, η) and µ j = Eq∗i [xi]. Following (3.7), the approximated variational distribution is

q∗i (xi) =
exp

(
xi

(
β
∑

j∈Ni
µ j + ηyi − h

))
exp

(
−

(
β
∑

j∈Ni
µ j + ηyi − h

))
+ exp

(
β
∑

j∈Ni
µ j + ηyi − h

)
=

exp (xi(mi + Li))
exp(−(mi + Li) + exp(mi + Li)

, (4.5)

where mi = β
∑

j∈Ni
µ j and Li = ηyi − h.

Since xi is a binary variable, which can have -1 or +1, the expectation of xi is calculated by

µi = Eq∗i [xi] = q∗i (xi = +1) − q∗i (xi = −1)

=
exp (mi + Li) − exp (− (mi + Li))
exp (mi + Li) + exp (− (mi + Li))

= tanh (mi + Li)

= tanh

ηyi + β
∑
j∈Ni

µ j − h

 . (4.6)

Let θ = (h, β, η) and φ = (mi, Li) be model parameters and variational parameters, respectively. To
get an expectation of xi with respect to q∗, we need to know the mean value of neighborhoods, µ j. By
iterating the above formulation (4.6), we can solve this problem,

µ(k+1)
i = tanh

β∑
j∈Ni

µ(k)
j + ηyi − h

 . (4.7)

Also, the ELBO is calculated by

ELBO(q) = Eq∗ [log p(x, y; θ) − log q∗(x; φ)]

=

N∑
i=1

Eq∗i

xi

ηyi + β
∑
j∈Ni

x j − h

 − log
(
e−

(
ηyi+β

∑
j∈Ni x j−h

)
+ eηyi+β

∑
j∈Ni x j−h

)
−

N∑
i=1

Eq∗i

[
xi(mi + Li) − log

(
e−(mi+Li) + emi+Li

)]
=

N∑
i=1

Eq∗i

xi

ηyi + β
∑
j∈Ni

x j − h

 − log

2 cosh

ηyi + β
∑
j∈Ni

x j − h





−

N∑
i=1

Eq∗i

[
xi(mi + Li) − log (2 cosh(mi + Li))

]
. (4.8)

5. Choosing the parameters

Following the empirical Bayes method (Casella, 2001), we find the model parameter θ maximizing
the evidence (marginal likelihood). We construct the variational density q∗ and calculate the ELBO.

log p(y; θ) = ELBO(q) + KL(q(x)||p(x|y)).
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Variational density q∗ is calculated by exp(E−i[log p(x, y; θ)]) in equation (3.7). Now, we want to
make the ELBO in equation (4.8) larger by adjusting the parameters. We consider the EM algorithm
since the form of ELBO is similar to the Q function of the EM. The main goal of the EM is to find the
maximum likelihood estimates or posterior mode by iterating E-step and M-step.

5.1. Expectation maximization (EM) and the variational expectation maximization
(VEM) algorithm

The main purpose of the EM algorithm (Dempster et al. 1977) is to find the maximum likelihood
estimates,

arg
θ

max L(θ; y) ∝ p(y; θ).

In the case of the marginal distribution of y being complex, we can introduce the latent variable x
as below,

log p(y; θ) = log
∑

x

p(x, y; θ)

= log
∑

x

q(x)
p(x, y; θ)

q(x)

≥
∑

x

q(x) log
p(x, y; θ)

q(x)
= L(q, θ).

L(q, θ) is a lower bound of marginal log likelihood. Instead of maximizing log p(y; θ), we maxi-
mize L(q, θ), which is called the Q function of the EM. To compute the Q function, we give the initial
value to the model parameter, and then find the MLE of it. The EM algorithm iterates those steps for a
fixed number of times or until the parameter converges. Thus, we iterate E-step and M-step described
below to find the MLE of θ.

E-step Compute Q function,

Q(θ; θ(t)) = Ep(x)[log p(x, y; θ)]

=
∑

x

p(x|y; θ(t)) log p(x, y; θ).

M-step Find a new θ maximizing the Q function,

θ(t+1) = arg
θ

max Q
(
θ; θ(t)

)
,

where y is an observed data, x is a latent variable and its density is p(y|x; θ(t)). A general EM algorithm
takes the simple form of p(x|y; θ) for computational convenience. In the VBI, we approximate the true
posterior as q∗. Thus, we use it instead of p(x|y; θ). Then, L(q, θ) is equal to the ELBO in the VBI.
The detailed process of variational EM (VEM) is as follows,

VE-step

Q(θ; φ(t)) = Eq∗ [log p(x, y; θ)]

=
∑

x

q∗
(
x; φ(t)

)
log p(x, y; θ),
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where θ = (h, β, η) and φ = (mi, Li). Also φ(t) is computed by (h(t), β(t), η(t)). That is, at iteration t,
m(t)

i = β(t) ∑
j∈Ni

µ(t)
j and L(t)

i = η(t)yi − h(t). In other words, in the E-step, we specify the variational

density q∗(x; φ(t)) by computing (m(t)
i , L

(t)
i ).

Q(θ; φ(t)) =
∑

x

q∗
(
x; φ(t)

)
log p(x, y; θ).

M-step

θ(t+1) = arg
θ

max Q(θ; φ(t)).

The VEM algorithm is the same as the EM algorithm except for the computation of the Q function.

5.2. Expectation/conditional-maximization algorithm

The VEM algorithm can be used to update the model parameters. However, it is complex to update
model parameters simultaneously because there are three model parameters. Thus, we employ the
expectation/conditional-maximization (ECM) algorithm (Meng and Rubin, 1993).

Suppose that the model parameter θ is (θ1, . . . , θn) and implement the EM algorithm. Then, in the
CM-step, one parameter θk is updated while holding the other parameters constant. In other words,
at iteration t, update θ(t+1)

k using (θ(t+1)
1 , . . . , θ(t+1)

k−1 , θ
(t)
k+1, . . . , θ

(t)
n ). Since our model parameters are h, β

and η, we update the parameters sequentially using the ECM algorithm. Now, we call it VECM by
combining VEM and ECM.

VE-step Compute Q(θ; φ)

Q(θ; φ) =

N∑
i=1

Qi(θ; φ), (5.1)

where

Qi(θ; φ) = Eq∗i [log p(xi, yi; θ)] =
∑

xi

q∗i (xi; φ) log p(xi, yi; θ)

= q∗i (xi = +1; φ) × log p(xi = +1, yi; θ) + q∗i (xi = −1; φ) × log p(xi = −1, yi; θ).

Then, Q(θ; φ) is computed by

Q(θ; φ) =

N∑
i=1

σ(2(mi + Li)) log p(xi = +1, yi; θ) +

N∑
i=1

σ(−2(mi + Li)) log p(xi = −1, yi; θ)

=

N∑
i=1

tanh(mi + Li)

β∑
j∈Ni

x j + ηyi − h

 − N∑
i=1

log

2 cosh

β∑
j∈Ni

x j + ηyi − h


 , (5.2)

where σ(·) is a sigmoid function.
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Figure 2: Original images.

The expression in (5.2) is summarized for each parameter as follows,

Q
(
h; h(t)

)
= −h

N∑
i=1

tanh(mi + Li) −
N∑

i=1

log

2 cosh

β∑
j∈Ni

x j + ηyi − h


 , (5.3)

Q
(
β; β(t)

)
= β

N∑
i=1

tanh(mi + Li)
∑
j∈Ni

x j

 − N∑
i=1

log

2 cosh

β∑
j∈Ni

x j + ηyi − h


 , (5.4)

Q
(
η; η(t)

)
= η

N∑
i=1

tanh(mi + Li)yi −

N∑
i=1

log

2 cosh

β∑
j∈Ni

x j + ηyi − h


 . (5.5)

CM-step Maximize Q function with respect to each parameter, sequentially.

h(t+1) = arg
h

max Q
(
h; h(t)

)
, (5.6)

β(t+1) = arg
β

max Q
(
β; β(t)

)
, (5.7)

η(t+1) = arg
η

max Q
(
η; η(t)

)
. (5.8)

Each Q function in equations (5.3)-(5.5) has a logarithm hyperbolic cosine term that becomes a
hyperbolic tangent function if they are differentiated. Since the hyperbolic tangent has no maximum
value, we cannot find the θ(t+1) using differentiation. Thus, we find the maximum value by substituting
numbers within a given range for each parameter.

6. Simulation results

Using the VECM algorithm, we can implement the binary image restoration.
The left figure in Figure 2 shows the original color image and the right one is the binary image.

To get the degraded image, we add some noise to the binary image with a probability of 0.1.
So far, we have discussed the structure of posterior and the variational density in Chapter 4 and the

EM algorithm to find the maximum likelihood estimates in Chapter 5. By summarizing this content,
the entire algorithm for restoration can be made.
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Algorithm 1: Binary image restoration

Step 1. Initialize the hyperparameters h(1), β(1), η(1) and calculate the initial values of µ, φ.

Step 2. Update the hyperparameters using the VECM algorithm.

h(k+1) = arg
h

max Q
(
h; h(k)

)
β(k+1) = arg

β
max Q

(
β; β(k)

)
η(k+1) = arg

η
max Q

(
η; η(k)

)
Step 3. Update µ(k+1) using the updated hyperparameters.

L(k+1)
i = η(k+1)yi − h(k+1)

m(k+1)
i = β(k+1)

∑
µ(k)

j

µ(k+1) = tanh
(
m(k+1)

i + L(k+1)
i

)
x(k+1)

i =

+1, if µ(k+1)
i ≥ 0

−1, if µ(k+1)
i < 0

The left column of Figure 3 is the degraded image with 10% noise and the figures in the middle
column are the results that have the highest Peak Signal-to-Noise Ratio (PSNR) and those figures on
the right are the maximum ELBO during 20 iterations. PSNR is a measurement of restoration.

PSNR = 10 log10

MAX2
I

MSE

 ,
where MAXI is the difference between the maximum and minimum values of pixels and MSE is the
mean squared error. The highest PSNR is 22.34, 22.31, 23.05, and 22.40 for each simulation.

Figure 4 shows the change of parameters and ELBO for each iteration. First, two simulations
start from the same initial value of h = 1, β = 1, η = 1. The results of 3rd and 4th start from
h = −1, β = 1.5, η = 3 and h = 2, β = 2, η = 1.8, respectively.

7. Conclusion

In this manuscript, the degraded binary images were restored using VBI with the Ising model. We ap-
ply the VECM algorithm to maximize the ELBO and update the model parameters. If the model
parameters are not updated, the restoration is very restricted. Without parameter estimating, the
restoration is greatly influenced by the initial value of the hyperparameters. If we set h = 0, then
the restoration result without parameter estimating is quite good. On the other hand, for example, if
h = 1, β = 1, η = 1, then the restored image becomes a black screen after a few iterations. Likewise,
if h = −1, β = 1, η = 1, then the restored image becomes a white screen. Because the restoration
process is highly sensitive to the initial values of the hyperparameters, especially h in this simulation
data, it is important to find the appropriate model parameters for each iteration.
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Figure 3: Restored images.

When the Q functions are computed in equations (5.6)-(5.8), we have to solve the numerical
equations to find a maxima. In this case, we substitute the numbers within a restricted range for each
set of parameters. In addition, the simple Ising model and prior distribution are used. Therefore, this
paper is applied only to the binary images. These two main problems can be solved by changing
the likelihood and the prior distributions. If the distribution of noise is changed, for example with
Gaussian or Student’s t-distribution, and another model is used instead of Ising, then it is possible to
expand to gray scale or color images. The gray scale and color image analysis using the VI method
will be our next thesis.
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Figure 4: Simulation results of h, β, η and ELBO.
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