• Title/Summary/Keyword: Noetherian ring

Search Result 164, Processing Time 0.022 seconds

ω-MODULES OVER COMMUTATIVE RINGS

  • Yin, Huayu;Wang, Fanggui;Zhu, Xiaosheng;Chen, Youhua
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.207-222
    • /
    • 2011
  • Let R be a commutative ring and let M be a GV -torsionfree R-module. Then M is said to be a $\omega$-module if $Ext_R^1$(R/J, M) = 0 for any J $\in$ GV (R), and the w-envelope of M is defined by $M_{\omega}$ = {x $\in$ E(M) | Jx $\subseteq$ M for some J $\in$ GV (R)}. In this paper, $\omega$-modules over commutative rings are considered, and the theory of $\omega$-operations is developed for arbitrary commutative rings. As applications, we give some characterizations of $\omega$-Noetherian rings and Krull rings.

A NOTE ON COHOMOLOGICAL DIMENSION OVER COHEN-MACAULAY RINGS

  • Bagheriyeh, Iraj;Bahmanpour, Kamal;Ghasemi, Ghader
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.275-280
    • /
    • 2020
  • Let (R, m) be a Noetherian local Cohen-Macaulay ring and I be a proper ideal of R. Assume that βR(I, R) denotes the constant value of depthR(R/In) for n ≫ 0. In this paper we introduce the new notion γR(I, R) and then we prove the following inequalities: βR(I, R) ≤ γR(I, R) ≤ dim R - cd(I, R) ≤ dim R/I. Also, some applications of these inequalities will be included.

INJECTIVE PROPERTY OF LAURENT POWER SERIES MODULE

  • Park, Sang-Won
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.367-374
    • /
    • 2001
  • Northcott and McKerrow proved that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-1}]$ is an injective left R[x]-module. Park generalized Northcott and McKerrow's result so that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-S}]$ is an injective left $R[x^S]$-module, where S is a submonoid of $\mathbb{N}$($\mathbb{N}$ is the set of all natural numbers). In this paper we extend the injective property to the Laurent power series module so that if R is a ring and E is an injective left R-module, then $E[[x^{-1},x]]$ is an injective left $R[x^S]$-module.

  • PDF

THE DIMENSION OF THE MAXIMAL SPECTRUM OF SOME RING EXTENSIONS

  • Rachida, El Khalfaoui;Najib Mahdou
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.983-992
    • /
    • 2023
  • Let A be a ring and 𝓙 = {ideals I of A | J(I) = I}. The Krull dimension of A, written dim A, is the sup of the lengths of chains of prime ideals of A; whereas the dimension of the maximal spectrum, denoted by dim 𝓙A, is the sup of the lengths of chains of prime ideals from 𝓙. Then dim 𝓙A ≤ dim A. In this paper, we will study the dimension of the maximal spectrum of some constructions of rings and we will be interested in the transfer of the property J-Noetherian to ring extensions.

QUASI-COMPLETENESS AND LOCALIZATIONS OF POLYNOMIAL DOMAINS: A CONJECTURE FROM "OPEN PROBLEMS IN COMMUTATIVE RING THEORY"

  • Farley, Jonathan David
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1613-1615
    • /
    • 2016
  • It is proved that $k[X_1,{\ldots},X_v ]$ localized at the ideal ($X_1,{\ldots},X_v$ ), where k is a field and $X_1,{\ldots},X_v$ indeterminates, is not weakly quasi-complete for $v{\geq}2$, thus proving a conjecture of D. D. Anderson and solving a problem from "Open Problems in Commutative Ring Theory" by Cahen, Fontana, Frisch, and Glaz.

SOME NEW CHARACTERIZATIONS OF QUASI-FROBENIUS RINGS BY USING PURE-INJECTIVITY

  • Moradzadeh-Dehkordi, Ali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.371-381
    • /
    • 2020
  • A ring R is called right pure-injective if it is injective with respect to pure exact sequences. According to a well known result of L. Melkersson, every commutative Artinian ring is pure-injective, but the converse is not true, even if R is a commutative Noetherian local ring. In this paper, a series of conditions under which right pure-injective rings are either right Artinian rings or quasi-Frobenius rings are given. Also, some of our results extend previously known results for quasi-Frobenius rings.

Bipolar fuzzy ideals of Near Rings

  • Baik, Hyoung-Gu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.394-398
    • /
    • 2012
  • Based on the theory of a bipolar fuzzy set, the notion of a bipolar fuzzy subring/ideal of a Near ring is introduced and related properties are investigated. Characterizations of a bipolar fuzzy subnear ring and a bipolar fuzzy ideal in near ring are established. Relations between a bipolar fuzzy ideal and a level cut are discussed. Using bipolar fuzzy ideals, we discuss characterizations of Noetherian Near ring.

EXACTNESS OF IDEAL TRANSFORMS AND ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES

  • BAHMANPOUR, KAMAL
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1253-1270
    • /
    • 2015
  • Let (R, m) be a commutative Noetherian local domain, M a non-zero finitely generated R-module of dimension n > 0 and I be an ideal of R. In this paper it is shown that if $x_1,{\ldots },x_t$ ($1{\leq}t{\leq}n$) be a sub-set of a system of parameters for M, then the R-module $H^t_{(x_1,{\ldots },x_t)}$(R) is faithful, i.e., Ann $H^t_{(x_1,{\ldots },x_t)}$(R) = 0. Also, it is shown that, if $H^i_I$ (R) = 0 for all i > dim R - dim R/I, then the R-module $H^{dimR-dimR/I}_I(R)$ is faithful. These results provide some partially affirmative answers to the Lynch's conjecture in [10]. Moreover, for an ideal I of an arbitrary Noetherian ring R, we calculate the annihilator of the top local cohomology module $H^1_I(M)$, when $H^i_I(M)=0$ for all integers i > 1. Also, for such ideals we show that the finitely generated R-algebra $D_I(R)$ is a flat R-algebra.