THE DIMENSION OF THE MAXIMAL SPECTRUM OF SOME RING EXTENSIONS

Rachida El Khalfaoui and Najib Mahdou

Abstract

Let A be a ring and $\mathcal{J}=\{$ ideals I of $A \mid J(I)=I\}$. The Krull dimension of A, written $\operatorname{dim} A$, is the sup of the lengths of chains of prime ideals of A; whereas the dimension of the maximal spectrum, denoted by $\operatorname{dim}_{\mathcal{J}} A$, is the sup of the lengths of chains of prime ideals from \mathcal{J}. Then $\operatorname{dim}_{\mathcal{J}} A \leq \operatorname{dim} A$. In this paper, we will study the dimension of the maximal spectrum of some constructions of rings and we will be interested in the transfer of the property J-Noetherian to ring extensions

1. Introduction

All rings considered in this paper are assumed to be commutative with identity. We denote by $\operatorname{Rad}(A), \operatorname{Nilp}(A)$ and $\operatorname{Reg}(A)$ the Jacobson radical, the nilradical and the set of regular elements of a ring A, respectively. If I is an ideal of $A, J(I)$ denotes the Jacobson radical of I, i.e., the intersection of all maximal ideals containing I.

Let $\mathcal{J}=\{$ ideals I of $A \mid J(I)=I\}$. By a chain of ideals of length n, we mean a sequence of ideals $I_{0} \subset I_{1} \subset \cdots \subset I_{n}$. The Krull dimension of A, written $\operatorname{dim} A$, is the sup of the lengths of chains of prime ideals of A; whereas the dimension of the maximal spectrum, denoted by $\operatorname{dim}_{\mathcal{J}} A$, is the sup of the lengths of chains of prime ideals from \mathcal{J}. Clearly, $\operatorname{dim}_{\mathcal{J}} A \leq \operatorname{dim} A$.

For any ideal I of A, a prime ideal P in \mathcal{J} which contains I is called a component of I if P is minimal among the primes of \mathcal{J} which contain I. Every $I \in \mathcal{J}$ is the intersection of its components. We say that A is J-Noetherian if the ideals of \mathcal{J} satisfy the ascending chain condition. A is J-Noetherian implies that every ideal of A has only finitely many components (and the statements are equivalent when $\operatorname{dim}_{\mathcal{J}} A$ is finite). Moreover, any prime of \mathcal{J} which contains I also contains a component of I. We refer the reader to Grothendieck ([12], p. 6, Paragr. 14) for a proper perspective of these concepts.

[^0]There both dim and $\operatorname{dim}_{\mathcal{J}}$ are treated simultaneously by considering $\operatorname{spec}(A)=\{$ prime ideals of A, with Zariski topology $\}$ and the subspace $\operatorname{Max}(A)$ consisting of the maximal ideals of A. Our set \mathcal{J} corresponds to the collection of closed subsets of $\operatorname{Max}(A)$, and $\operatorname{dim}_{\mathcal{J}} R$ is the combinatorial dimension of $\operatorname{Max}(A)$ in Grothendieck's terminology.

For a proper ideal I of a ring A, a comaximal factorization is a product $I=I_{1} I_{2} \cdots I_{n}$ of proper ideals with $I_{i}+I_{j}=A$ for $i \neq j$. A proper ideal I is called pseudo-irreducible if it has no comaximal factorizations except for $I=I$. If the factors of a comaximal factorization $I=I_{1} I_{2} \cdots I_{n}$ are pseudoirreducible, then the comaximal factorization $I=I_{1} I_{2} \cdots I_{n}$ is called complete. In [13], the authors showed that the complete comaximal factorization for every proper ideal of a ring A exists if and only if A is J-Noetherian.

Let A be a ring and E an A-module. The trivial ring extension of A by E (also called the idealization of E over A) is the ring $R:=A \propto E$ whose underlying group is $A \times E$ with multiplication given by $(a, e)\left(a^{\prime}, e^{\prime}\right)=\left(a a^{\prime}, a e^{\prime}+\right.$ $a^{\prime} e$). Recall that if I is an ideal of A and E^{\prime} is a submodule of E such that $I E \subseteq E^{\prime}$, then $J=I \propto E^{\prime}$ is an ideal of R. However, prime (resp., maximal) ideals of R have the form $P \propto E$, where P is a prime (resp., maximal) ideal of A [1, Theorem 3.2]. Suitable background on commutative trivial ring extensions can be found in $[1,2,11,14]$.

Let T be a ring and let M be an ideal of T. Denote by π the natural surjection $\pi: T \longrightarrow T / M$. Let D be a subring of T / M. Then, $R:=\pi^{-1}(D)$ is a subring of T and M is a common ideal of R and T such that $D=R / M$. The ring R is known as the pullback associated to the following pullback diagram:

where i and j are the natural injections.
A particular case of this pullback is the $D+M$-construction, when the ring T is of the form $K+M$, where K is a field and M is a maximal ideal of T, and R takes the form $D+M$. See for instance $[10,11]$.

Let A and B be two rings, let J be an ideal of B and let $f: A \longrightarrow B$ be a ring homomorphism. In this setting, we consider the following subring of $A \times B$:

$$
A \bowtie^{f} B=\{(a, f(a)+j): a \in A, j \in J\}
$$

called the amalgamation of A and B along J with respect to f. Moreover, other classical constructions (such as the $A+X B[X], A+X B[[X]]$, and the $D+M$ constructions) can be studied as particular cases of the amalgamation (see [5, Examples 2.5 and 2.6]) and other classical constructions, such as the Nagata's idealization (cf. [15, p. 2]), and the CPI extensions (in the sense of Boisen and Sheldon [3]) are strictly related to it (see [5, Example 2.7 and Remark 2.8]).

A particular case of this construction is the amalgamated duplication of a ring along an ideal I (introduced and studied by D'Anna and Fontana in [4, 8, 9]). Let A be a ring, and let I be an ideal of $A . A \bowtie I:=\{(a, a+i): a \in A, i \in i\}$ is called the amalgamated duplication of A along the ideal I. See for instance [4-9].

In this paper, we will study the dimension of the maximal spectrum of some constructions of rings and we will be interested in the transfer of the property J Noetherian to ring extensions such as homomorphic image, localization, direct product, trivial ring extension and the amalgamation of rings.

Let A be a ring. We denote by $\mathcal{J}_{A}=\{$ ideals I of $A \mid J(I)=I\}$.

2. Main results

We start our study with the homomorphic image. We have the following result:

Proposition 2.1. Let R be a ring and K an ideal of R.
(1) If $\frac{I}{K} \in \mathcal{J}_{\frac{R}{K}}$, then $I \in \mathcal{J}_{R}$.
(2) Let I be an ideal of R such that $K \subseteq I$. Then, $I \in \mathcal{J}_{R}$ if and only if $\frac{I}{K} \in \mathcal{J}_{\frac{R}{K}}$.

Proof. (1) Let $\frac{I}{K} \in \mathcal{J}_{\frac{R}{K}}$. Then, $\frac{I}{K}=J\left(\frac{I}{K}\right)=\bigcap_{\substack{M \in M a x(R) \\ I \subseteq M}} \frac{M}{K}=\frac{J(I)}{K}$.
Hence, $I=J(I)$ and so $I \in \mathcal{J}_{R}$.
(2) Let I be an ideal of R such that $K \subseteq I$. If $I \in \mathcal{J}_{R}$, then $I=J(I)=$ $\bigcap_{\substack{M \in \operatorname{Max}(R) \\ I \subseteq M}} M$. So,

$$
\frac{I}{K}=\frac{J(I)}{K}=\bigcap_{\substack{M \in M a x(R) \\ I \subseteq M}} \frac{M}{K}=J\left(\frac{I}{K}\right) .
$$

Therefore, $\frac{I}{K} \in \mathcal{J}_{\frac{R}{K}}$. The converse comes from (1).
Now, we will see the dimension of the maximal spectrum of the homomorphic image and the transfer of the J-Noetherianity.

Theorem 2.2. Let R be a ring and K an ideal of R.
(1) (a) $\operatorname{dim}_{\mathcal{J}_{\frac{R}{K}}^{K}}\left(\frac{R}{K}\right) \leq \operatorname{dim}_{\mathcal{J}_{R}}(R)$.
(b) If $K \stackrel{K}{=} \bigcap_{P \in\left(\mathcal{J}_{R} \cap \operatorname{Spect}(R)\right)} P$, then $\operatorname{dim}_{\mathcal{J}_{\frac{R}{K}}}\left(\frac{R}{K}\right)=\operatorname{dim}_{\mathcal{J}_{R}}(R)$.
(2) If R is J-Noetherian, then so is $\frac{R}{K}$.

Proof. (1) (a) Let $\frac{P_{0}}{K} \subseteq \frac{P_{1}}{K} \subseteq \cdots \subseteq \frac{P_{n}}{K}$ be a maximal chain of prime ideals from $\mathcal{J}_{\frac{R}{K}}$. Then, P_{i} is a prime ideal from \mathcal{J}_{R} for each $i=0,1, \ldots, n$ by Proposition 2.1. So, $P_{0} \subseteq P_{1} \subseteq \cdots \subseteq P_{n}$ is a chain of prime ideals from
\mathcal{J}_{R} that has the same length of the chain $\frac{P_{0}}{K} \subseteq \frac{P_{1}}{K} \subseteq \cdots \subseteq \frac{P_{n}}{K}$. Hence, $\operatorname{dim}_{\mathcal{J}_{\frac{R}{R}}}\left(\frac{R}{K}\right) \leq \operatorname{dim}_{\mathcal{J}_{R}}(R)$.
(b) It follows from by (a) and Proposition 2.1.
(2) Suppose that R is J-Noetherian. Let $\frac{I_{0}}{K} \subseteq \frac{I_{1}}{K} \subseteq \frac{I_{3}}{K} \subseteq \cdots$ be a chain of ideals of $\mathcal{J}_{\frac{R}{K}}$. By Proposition 2.1(1), I_{i} is an ideal of \mathcal{J}_{R} for $i=1,2, \ldots$.. Then, we obtain the chain of ideals of $\mathcal{J}_{R}, I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots$. Since R is J Noetherian, there exists a positive integer n such that $I_{n}=I_{n+1}=I_{n+2}=\cdots$. Hence, $\frac{I_{n}}{K}=\frac{I_{n+1}}{K}=\frac{I_{n+2}}{K}=\cdots$ and so $\frac{R}{K}$ is a J-Noetherian ring.

For localization, we have the following result:
Proposition 2.3. Let A be a quasilocal ring and $S=\operatorname{Reg}(A)$.
(1) If $S^{-1} I \in \mathcal{J}_{S^{-1} A}$, then $I \in \mathcal{J}_{A}$.
(2) Let I be an ideal of A such that there exists a maximal ideal $M, I \subseteq M$ and $M \cap S=\emptyset$. Then, $S^{-1} I \in \mathcal{J}_{S^{-1} A}$ if and only if $I \in \mathcal{J}_{A}$.

Proof. (1) If $S^{-1} I \in \mathcal{J}_{S^{-1} A}$, then

$$
\begin{aligned}
S^{-1} I & =J\left(S^{-1} I\right) \\
& =\bigcap_{M \cap S=\emptyset}^{I \subseteq M \in M a x(A)} \\
& =\bigcap_{I \subseteq M \in \operatorname{Max}(A)} S^{-1} M \\
& =S^{-1}\left(\bigcap_{I \subseteq M \in \operatorname{Max}(A)} M\right)
\end{aligned}
$$

(since A is quasilocal and S^{-1} commutes with finite intersection)

$$
=S^{-1}(J(I))
$$

Since $S=\operatorname{Reg}(A)$ and $S^{-1} I=S^{-1}(J(I))$ then $I=J(I)$. Hence, $I \in \mathcal{J}_{A}$.
(2) Let I be an ideal of A such that there exists a maximal ideal $M, I \subseteq M$ and $M \cap S=\emptyset$. Suppose that $I \in \mathcal{J}_{A}$. Then, $I=J(I)$. So,

$$
\begin{aligned}
S^{-1} I & =S^{-1}(J(I)) \\
& =S^{-1}\left(\bigcap_{I \subseteq M \in M a x(A)} M\right) \\
& =\bigcap_{I \subseteq M \in \operatorname{Max}(A)} S^{-1} M \\
& =\bigcap_{\substack{M \cap S=\emptyset \\
I \subseteq M \in \operatorname{Max}(A)}} S^{-1} M
\end{aligned}
$$

(Since there exists a maximal ideal $M, I \subseteq M$ and $M \cap S=\emptyset$)

$$
=J\left(S^{-1} I\right)
$$

Hence, $S^{-1} I \in \mathcal{J}_{S^{-1} A}$.
Our next theorem develops a result on the dimension of the maximal spectrum of localization.

Theorem 2.4. Let A be a quasilocal ring and $S=\operatorname{Reg}(A)$.
(1) $\operatorname{dim}_{\mathcal{J}_{S^{-1} A}}\left(S^{-1} A\right) \leq \operatorname{dim}_{\mathcal{J}_{A}}(A)$.
(2) If A is J-Noetherian, then so is $S^{-1} A$.

Proof. (1) Let $S^{-1} P_{0} \subseteq S^{-1} P_{1} \subseteq \cdots \subseteq S^{-1} P_{n}$ be a maximal chain of prime ideals from $\mathcal{J}_{S^{-1} A}$. Then, P_{i} is a prime ideal from \mathcal{J}_{A} for each $i=0,1, \ldots, n$ by Proposition 2.3. So, $P_{0} \subseteq P_{1} \subseteq \cdots \subseteq P_{n}$ is a chain of prime ideals from \mathcal{J}_{A} that has the same length of the chain $S^{-1} P_{0} \subseteq S^{-1} P_{1} \subseteq \cdots \subseteq S^{-1} P_{n}$. Hence, $\operatorname{dim}_{\mathcal{J}_{S} 1_{A}}\left(S^{-1} A\right) \leq \operatorname{dim}_{\mathcal{J}_{A}}(A)$.
(2) Suppose that A is J-Noetherian. Let $S^{-1} K_{1} \subseteq S^{-1} K_{2} \subseteq S^{-1} K_{3} \subseteq \cdots$ be a chain of ideals of $\mathcal{J}_{S^{-1} A}$. By Proposition 2.3(1), K_{i} is an ideal of \mathcal{J}_{A} for $i=1,2, \ldots$. Then, we obtain the chain of ideals from $\mathcal{J}_{A}, K_{1} \subseteq K_{2} \subseteq$ $K_{3} \subseteq \cdots$. Since A is J-Noetherian, there exists a positive integer n such that $K_{n}=K_{n+1}=K_{n+2}=\cdots$. Hence, $S^{-1} K_{n}=S^{-1} K_{n+1}=S^{-1} K_{n+2}=\cdots$ and so $S^{-1} A$ is a J-Noetherian ring.

In [16, Lemma 3.13], the author gives a necessary and sufficient condition for the ring $R \times S$, where R and S are two rings, to be J-Noetherian.

Proposition 2.5 (Lemma 3.13, [16]). Let R and S be two rings. Then R and S are J-Noetherian if and only if $R \times S$ is J-Noetherian.

For the dimension of the maximal spectrum of direct products, we give the following result.

Proposition 2.6. Let R and S be two rings. Then

$$
\operatorname{dim}_{\mathcal{J}_{R \times S}}(R \times S)=\sup \left\{\operatorname{dim}_{\mathcal{J}_{S}} S, \operatorname{dim}_{\mathcal{J}_{R}} R\right\} .
$$

For the proof of this proposition we will need the following lemma:
Lemma 2.7. Let R and S be two rings. Then
(1) Let I be an ideal of R. Then $J(I \times S)=J(I) \times S$.
(2) Let K be an ideal of S. Then $J(R \times K)=R \times J(K)$.

Proof. Obviously by the definition of the Jacobson radical of an ideal.
Proof of Proposition 2.6. Prime ideals of $R \times S$ have the form $P \times S$ or $R \times Q$, where P (resp., Q) is a prime ideal of R (resp., S). The result follows from Lemma 2.7.

Now, we study the trivial ring extension of the ring A by an A-module E, $R:=A \propto E$. Recall that if I is an ideal of A and E^{\prime} is a submodule of E such that $I E \subseteq E^{\prime}$, then $J=I \propto E^{\prime}$ is an ideal of R. However, prime (resp., maximal) ideals of R have the form $P \propto E$, where P is a prime (resp., maximal) ideal of A [1, Theorem 3.2].

The following proposition gives the relation between the sets \mathcal{J}_{R} and \mathcal{J}_{A}.
Proposition 2.8. Let A be a ring, E an A-module and $R=A \propto E$.
(1) For all $K \in \mathcal{J}_{R}$, K has the form $I \propto E$ for some ideal I of A.
(2) $I \in \mathcal{J}_{A}$ if and only if $I \propto E \in \mathcal{J}_{R}$.

Proof. (1) All maximal ideals of R have the form $M \propto E$, where M is a maximal ideal of A. Then, $\mathcal{J}_{R}=\{$ ideals K of $R \mid J(K)=K$ \} $=$ \{ideals K of $\left.R \mid J(K)=\bigcap_{\substack{M \in M a x(A) \\ K \subseteq M \propto E}}(M \propto E)=K\right\}$. So, $K \in \mathcal{J}_{R}$ if and only if
$\bigcap_{\substack{M \in \operatorname{Max}(A) \\ K \subseteq M \propto E}}(M \propto E)=K$ and since $0 \propto E \subseteq \bigcap_{\substack{M \in M a x(A) \\ K \subseteq M \propto E}}(M \propto E)=K$ then K has the form $I \propto E$ for some ideal I of A.
(2) $I \in \mathcal{J}_{A}$ if and only if $I=J(I)=\bigcap_{\substack{M \in \operatorname{Max}(A) \\ I \subseteq M}} M$ that is equivalent to
$I \propto E=\bigcap_{\substack{M \in \operatorname{Max}(A) \\ I \subset M}}(M \propto E)=J(I \propto E)$ and so $I \propto E \in \mathcal{J}_{R}$. Therefore, $I \in \mathcal{J}_{A}$ if and only if $I \propto E \in \mathcal{J}_{R}$.

We give the following result for the dimension of the maximal spectrum of the trivial ring extension and the transfer of the J-Noetherianity to it.

Theorem 2.9. Let A be a ring, E an A-module and $R=A \propto E$. Then:
(1) $\operatorname{dim}_{\mathcal{J}_{A}} A=\operatorname{dim}_{\mathcal{J}_{R}} R$.
(2) A is J-Noetherian if and only if R is J-Noetherian.

Proof. (1) Let $P_{0} \subseteq P_{1} \subseteq \cdots \subseteq P_{n}$ be a maximal chain of prime ideals from \mathcal{J}_{A}. Then, $P_{i} \propto E$ is a prime ideal from \mathcal{J}_{R} for each $i=0,1, \ldots, n$ by Proposition 2.8. So, $P_{0} \propto E \subseteq P_{1} \propto E \subseteq \cdots \subseteq P_{n} \propto E$ is a chain of prime ideals from \mathcal{J}_{R} that has the same length of the chain $P_{0} \subseteq P_{1} \subseteq \cdots \subseteq P_{n}$. Hence, $\operatorname{dim}_{\mathcal{J}_{R}}(A \propto E) \geq \operatorname{dim}_{\mathcal{J}_{A}} A$.

Let $H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{m}$ be a maximal chain of prime ideals from \mathcal{J}_{R}. By Proposition 2.8, $H_{i}=P_{i} \propto E$, where P_{i} is a prime ideal from \mathcal{J}_{A} for $i=0, \ldots, m$. Then there exists a chain of prime ideals from $\mathcal{J}_{A}, P_{0} \subseteq P_{1} \subseteq$ $\cdots \subseteq P_{m}$. Hence, $\operatorname{dim}_{\mathcal{J}_{A}} A \geq \operatorname{dim}_{\mathcal{J}_{R}}(A \propto E)$.

We conclude that $\operatorname{dim}_{\mathcal{J}_{A}} A=\operatorname{dim}_{\mathcal{J}_{R}} R$.
(2) Suppose that A is J-Noetherian. Let $K_{1} \subseteq K_{2} \subseteq K_{3} \subseteq \cdots$ be a chain of ideals of \mathcal{J}_{R}. By Proposition 2.8(1), $K_{i}=I_{i} \propto E$, where I_{i} is an ideal of \mathcal{J}_{A} for $i=1,2, \ldots$. Then, we obtain the chain of ideals of $\mathcal{J}_{A}, I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots$.

Since A is J-Noetherian there exists a positive integer n such that $I_{n}=I_{n+1}=$ $I_{n+2}=\cdots$. Hence, $I_{n} \propto E=I_{n+1} \propto E=I_{n+2} \propto E=\cdots$ and so R is a J-Noetherian ring.

Conversely, suppose that R is J-Noetherian. Let $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots$ a chain of ideals of \mathcal{J}_{A}. By Proposition 2.8(1), $I_{i} \propto E$ is an ideal of \mathcal{J}_{R} for $i=1,2, \ldots$. Then, we obtain the chain of ideals of $\mathcal{J}_{R}, I_{1} \propto E \subseteq I_{2} \propto E \subseteq I_{3} \propto E \subseteq \cdots$. Since R is J-Noetherian there exists a positive integer n such that $I_{n} \propto E=$ $I_{n+1} \propto E=I_{n+2} \propto E=\cdots$. Hence, $I_{n}=I_{n+1}=I_{n+2}=\cdots$ and so A is a J-Noetherian ring.

Let A and B be two rings, let J be an ideal of B and let $f: A \rightarrow B$ be a ring homomorphism. The ring $R=A \bowtie^{f} J$ is the amalgamation of A and B along J with respect to f. For all $P \in \operatorname{Spec}(A)$ and $Q \in \operatorname{Spec}(B)$, set

$$
\begin{gathered}
P^{\prime f}=P \bowtie^{f} J=\{(p, f(p)+j): p \in P, j \in J\}, \\
\bar{Q}^{f}=\{(a, f(a)+j): a \in A, j \in J, f(a)+j \in Q\} .
\end{gathered}
$$

Recall that prime (resp., maximal) ideals of R are of the type $P^{\prime f}$ or \bar{Q}^{f} for $P \in \operatorname{Spec}(A)$ (resp., $P \in \operatorname{Max}(A)$) and $Q \in \operatorname{Spec}(B) \backslash V(J)$ (resp., $Q \in$ $\operatorname{Max}(B) \backslash V(J))$, where $V(J)=\{P \in \operatorname{Spec}(B) \mid J \subseteq P\}[6$, Proposition 2.6].

As in the previous sections, the following proposition gives the relation between the sets $\mathcal{J}_{A \bowtie f} J$ and \mathcal{J}_{A}.

Proposition 2.10. Let A and B be rings, J an ideal of B and let $f: A \rightarrow B$ be a ring homomorphism. If $J \subset \operatorname{Rad}(B)$, then
(1) $I \in \mathcal{J}_{A}$ if and only if $I \bowtie^{f} J \in \mathcal{J}_{A \bowtie^{f} J}$.
(2) All ideals of $\mathcal{J}_{A \bowtie^{f} J}$ have the form $I \bowtie^{f} J$, where I is an ideal in \mathcal{J}_{A}.

Proof. By the condition $J \subseteq \operatorname{Rad}(B)$, all maximal ideals of $A \bowtie^{f} J$ have the form $M \bowtie^{f} J$, where $M \in \operatorname{Max}(A)$.
(1) Let $I \in \mathcal{J}_{A}$. Then $I=J(I)=\bigcap_{\substack{M \in \operatorname{Max}(A) \\ I \subseteq M}} M$. Hence,

$$
\begin{aligned}
I \bowtie^{f} J=J(I) \bowtie^{f} J & =\left(\bigcap_{\substack{M \in M a x(A) \\
I \subseteq M}} M\right) \bowtie^{f} J \\
& =\bigcap_{\substack{M \in M a x(A) \\
I \subseteq M}} M \bowtie^{f} J=J\left(I \bowtie^{f} J\right) .
\end{aligned}
$$

So, $I \bowtie^{f} J \in \mathcal{J}_{A \bowtie^{f} J}$.
Conversely, suppose that $I \bowtie^{f} J \in \mathcal{J}_{A \bowtie f} J$. Then

$$
I \bowtie^{f} J=J\left(I \bowtie^{f} J\right)=\bigcap_{\substack{M \in M a x(A) \\ I \subseteq M}} M \bowtie^{f} J
$$

$$
=\left(\bigcap_{\substack{M \in M a x(A) \\ I \subseteq M}} M\right) \bowtie^{f} J=J(I) \bowtie^{f} J .
$$

Therefore, $I=J(I)$ and so $I \in \mathcal{J}_{A}$.
(2) Let $K \in \mathcal{J}_{A \bowtie f J} . \quad K=J(K)=\bigcap_{\substack{M \in M a x(A) \\ K \subseteq M}} M \bowtie^{f} J$. Since $0 \times J \subseteq$ $\bigcap_{\operatorname{Max}(A)} M \bowtie^{f} J$ then $0 \times J \subseteq K$ and so $K=I \bowtie^{f} J$ for some ideal I in $K \subseteq M$
\mathcal{J}_{A}.
Remark 2.11. If $I \in \mathcal{J}_{A}$, then $I \bowtie^{f} J \in \mathcal{J}_{A \bowtie \bowtie^{f} J}$ without any conditions. Indeed,

$$
J\left(I \bowtie^{f} J\right)=\bigcap_{\substack{\mathcal{M} \in \operatorname{Max}\left(A \bowtie^{f} J\right) \\\left(I \bowtie \bowtie^{f} J\right) \subseteq \mathcal{M}}} \mathcal{M}
$$

All maximal ideals that contain $I \bowtie^{f} J$ have the form $M \bowtie^{f} J$, where M is a maximal ideal of A (since $I \bowtie^{f} J$ contains $0 \times J$). Hence,

$$
\begin{aligned}
J\left(I \bowtie^{f} J\right)=\bigcap_{\substack{M \in M a x(A) \\
I \subseteq M}} M \bowtie^{f} J & =\left(\bigcap_{\substack{M \in \operatorname{Max}(A) \\
I \subseteq M}} M\right) \bowtie^{f} J \\
& =J(I) \bowtie^{f} J=I \bowtie^{f} J .
\end{aligned}
$$

The author of [16] gives a characterization for the amalgamated algebra along an ideal to be J-Noetherian, and for the convenience of the reader we include it here.

Proposition 2.12 (Proposition 3.14, [16]). $A \bowtie^{f} J$ is J-Noetherian if and only if A and $f(A)+J$ are J-Noetherian.

Now, we will see the dimension of the maximal spectrum of the amalgamation of rings and the transfer of the J-Noetherianty.

Proposition 2.13. Let A and B be rings, J an ideal of B and let $f: A \rightarrow B$ be a ring homomorphism. If $J \subseteq \operatorname{Nilp}(B)$, then

$$
\operatorname{dim}_{\mathcal{J}_{A \bowtie f}}\left(A \bowtie^{f} J\right)=\operatorname{dim}_{\mathcal{J}_{A}}(A) .
$$

Proof. If $J \subseteq \operatorname{Nilp}(B)$, then all prime ideals of $A \bowtie^{f} J$ have the form $P \bowtie^{f} J$, where $P \in \operatorname{Spec}(A)$.

Let $P_{0} \bowtie^{f} J \subseteq P_{1} \bowtie^{f} J \subseteq \cdots \subseteq P_{n} \bowtie^{f} J$ be a maximal chain of prime ideals from $\mathcal{J}_{A \bowtie f J}$. Then, P_{i} is a prime ideal from \mathcal{J}_{A} for each $i=0,1, \ldots, n$ by Proposition 2.10. So, $P_{0} \subseteq P_{1} \subseteq \cdots \subseteq P_{n}$ is a chain of prime ideals from \mathcal{J}_{A}. Hence, $\operatorname{dim}_{\mathcal{J}_{A \bowtie f_{J}}\left(A \bowtie^{f} J\right) \leq \operatorname{dim}_{\mathcal{J}_{A}}(A) \text {. Conversely, let } P_{0} \subseteq P_{1} \subseteq \cdots \subseteq P_{n}, ~}^{\text {. }}$
be a maximal chain of prime ideals from \mathcal{J}_{A}. Then, $P_{0} \bowtie^{f} J \subseteq P_{1} \bowtie^{f} J \subseteq$ $\cdots \subseteq P_{n} \bowtie^{f} J$ is a chain of prime ideals from $\mathcal{J}_{A \bowtie^{f} J}$ by Proposition 2.10 and so $\operatorname{dim}_{\mathcal{J}_{A \bowtie f}{ }_{J}}\left(A \bowtie^{f} J\right) \geq \operatorname{dim}_{\mathcal{J}_{A}}(A)$. We conclude that $\operatorname{dim}_{\mathcal{J}_{A \bowtie f}{ }_{J}}\left(A \bowtie^{f} J\right)=$ $\operatorname{dim}_{\mathcal{J}_{A}}(A)$.

Remark 2.14. Without the condition $J \subseteq \operatorname{Nilp}(B)$, the following results are still true: $\operatorname{dim}_{\mathcal{J}_{A \bowtie f}}\left(A \bowtie^{f} J\right) \geq \operatorname{dim}_{\mathcal{J}_{A}}(A)$. It suffices to see that the condition $(J \subseteq \operatorname{Nilp}(B))$ is not used in the second part in the proof of Theorem 2.13.

Acknowledgements. The authors would like to express their sincere thanks for the referee for his/her helpful suggestions and comments.

References

[1] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
[2] C. Bakkari, S. Kabbaj, and N. Mahdou, Trivial extensions defined by Prüfer conditions, J. Pure Appl. Algebra 214 (2010), no. 1, 53-60. https://doi.org/10.1016/j.jpaa. 2009.04.011
[3] M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrums, Canad. J. Math. 29 (1977), no. 4, 722-737. https://doi.org/ 10.4153/CJM-1977-076-6
[4] M. D'Anna, A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507-519. https://doi.org/10.1016/j.jalgebra.2005.12.023
[5] M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
[6] M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
[7] M. D'Anna, C. A. Finocchiaro, and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44 (2016), no. 5, 1836-1851. https://doi.org/10.1080/00927872.2015.1033628
[8] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459. https://doi.org/10.1142/ S0219498807002326
[9] M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multi-plicative-canonical ideal, Ark. Mat. 45 (2007), no. 2, 241-252. https://doi.org/10. 1007/s11512-006-0038-1
[10] S. El Baghdadi, A. Jhilal, and N. Mahdou, On FF-rings, J. Pure Appl. Algebra 216 (2012), no. 1, 71-76. https://doi.org/10.1016/j.jpaa.2011.05.003
[11] S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, SpringerVerlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570
[12] A. Grothendieck, Éléments de géométrie algébrique, Publ. Inst. Hades Etudes Sci., No. 20 (1964).
[13] S. Hedayat and E. Rostami, A characterization of commutative rings whose maximal ideal spectrum is Noetherian, J. Algebra Appl. 17 (2018), no. 1, 1850003, 8 pp. https: //doi.org/10.1142/S0219498818500032
[14] S.-E. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra 32 (2004), no. 10, 3937-3953. https://doi.org/10.1081/AGB200027791
[15] M. Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley \& Sons, Inc.), New York, 1962.
[16] E. Rostami, Decomposition of ideals into pseudo-irreducible ideals in amalgamated algebra along an ideal, J. Mahani Math. Res. Cent. 6 (2017), no. 1, 13-24.

Rachida El Khalfaoui
Mathematical Sciences and Applications Laboratory
Department of Mathematics
Faculty of Sciences Dhar Al Mahraz
P. O. Box 1796, University S.M. Ben Abdellah

Fez 30000, Morocco
Email address: elkhalfaoui-rachida@outlook.fr
Najib Mahdou
Laboratory of Modeling and Mathematical Structures
Department of Mathematics
Faculty of Science and Technology of Fez
Box 2202, University S.M. Ben Abdellah
Fez 30000, Morocco
Email address: mahdou@hotmail.com

[^0]: Received November 13, 2022; Revised December 15, 2022; Accepted December 23, 2022. 2020 Mathematics Subject Classification. 13A15, 13E05, 13G05.
 Key words and phrases. J-Noetherian, The dimension of the maximal spectrum of rings, trivial extension, amalgamation of rings.

