• Title/Summary/Keyword: No addition catalyst

Search Result 113, Processing Time 0.023 seconds

Synthesis and Property of Carbon Nanotube-Supported Pd and Pt Nanoparticles (탄소나노 튜브위에 성장된 Pd 및 Pt 나노 입자의 제조 및 특성)

  • Kim, Hyung-Kun;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.192-197
    • /
    • 2009
  • Carbon nanotubes (CNT) were used as a catalyst support where catalytically active Pd and Pt metal particles decorated the outside of the external CNT walls. In this study, Pd and Pt nanoparticles supported on $HNO_3$-treated CNT were prepared by microwave-assisted heating of the polyol process using $PdCl_2$ and $H_2PtCl_6{\codt}6H_2O$ precursors, respectively, and were then characterized by SEM, TEM, and Raman. Raman spectroscopy showed that the acid treated CNT had a higher intensity ratio of $I_D/I_G$ compared to that of non-treated CNT, indicating the formation of defects or functional groups on CNT after chemical oxidation. Microwave irradiation for total two minutes resulted in the formation of Pd and Pt nanoparticles on the acid treated CNT. The sizes of Pd and Pt nanoparticles were found to be less than 10 nm and 3 nm, respectively. Furthermore, the $SnO_2$ films doped with CNT decorated by Pd and Pt nanoparticles were prepared, and then the $NO_2$ gas response of these sensor films was evaluated under $1{\sim}5\;ppm$ $NO_2$ concentration at $200^{\circ}C$. It was found that the sensing property of the $SnO_2$ film sensor on $NO_2$ gas was greatly improved by the addition of CNT-supported Pd and Pt nanoparticles.

An Experimental Study on the Combustion Characteristics of a Catalytic Combustor for an MCFC Power Generation System (MCFC 발전시스템용 촉매연소기의 연소 특성에 관한 실험적 연구)

  • Hong, Dong-Jin;Ahn, Kook-Young;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • In the MCFC power generation system, the combustor supplies a high temperature mixture of gases to the cathode and heat to the reformer by using the off-gas from the anode; the off-gas includes high concentrations of $H_2O$ and $CO_2$. Since a combustor needs to be operated in a very lean condition and avoid local heating, a catalytic combustor is usually adopted. Catalytic combustion is also generally accepted as one of the environmentally preferred alternatives for generation of heat and power from fossil fuels because of its complete combustion and low emissions of pollutants such as CO, UHC, and $NO_x$. In this study, experiments were conducted on catalytic combustion behavior in the presence of Pd-based catalysts for the BOP (Balance Of Plant) of 5 kW MCFC (Molten Carbonate Fuel Cell) power generation systems. Extensive investigations were carried out on the catalyst performance with the gaseous $CH_4$ fuel by changing such various parameters as $H_2$ addition, inlet temperature, excess air ratio, space velocity, catalyst type, and start-up schedule of the pilot system adopted in the BOP.

A Study on the Preparation of Ternary Transition Metal Coated-Dimensionally Stable Anode for Electrochemical Oxidation (전기화학적 산화를 위한 삼원 전이 금속 코팅 불용성 산화 전극 제조에 관한 연구)

  • Park, Jong-Hyeok;Choi, Jang-Uk;Park, Jin-Soo
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.409-416
    • /
    • 2021
  • Dimensionally stable electrodes are one of the important components in electrochemical water treatment processes. In the manufacturing of the dimensionally stable electrodes, the type of metal catalyst coated on the surface of the metal substrate, the coating and sintering methods substantially influence their performance and durability. In this study, using Ir-Ru-Ta ternary metal coating, various electrodes were prepared depending on the coating method under the same pre-treatment and sintering conditions, and its performance and durability were studied. As a coating method, brush and spray coating were used. As a result, the reduction in the amount of catalyst ink was achieved because more amount of metal could be coated for the electrode using spraying with the same amount of catalyst ink. In addition, the spray_2.0_3.0 electrode prepared by a specific spray coating method shows the phenomenon of cracking and the uniform coating of the ternary metal on the surface of the coating layer, and results in a high electrochemically active specific surface area, and the decomposition performance of 4-chlorophenol was superior to the other electrodes. However, it was found that there was no significant difference in durability depending on the coating method.

A study on the removing of contaminants by TiO2 coating and CaO additive (TiO2 코팅과 CaO 첨가에 따른 독성물질 제거에 관한 연구)

  • Woo, Insung;Lee, Geonduk;Hwang, Myungwhan;Lee, Hongju
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.3
    • /
    • pp.127-132
    • /
    • 2013
  • This study shows an air-purification test by the UV lamp on which TiO2 catalyst is deposited with glass fiber in the reactor chamber. This test was based on the fundamental data of air-purifier as assessing a removing ability on various contaminants such as CH3COOH, NH3, NO and SO2 as variation of the TiO2 coating, the wave of UV lamp, and the additive CaO. As a result, the highest decomposing removal ratio was shown when 5-times coated glass fiber was used. It can be due to the recombination reaction of electrons and electron-hole in the loaded CaO. Thus, the decomposing removal ratio increased as the recombination ratio decreased. In addition, it was confirmed that the decomposing removal ratio lowered when CaO was considerably deposited because it hided the lamp of OH-1 radical.

Reduction of Estrogenic Activity by Gamma-ray Treatment (감마선 처리에 의한 에스트로겐 활성 저감 연구)

  • Kang, Sung-Wook;Seo, Jaehwan;Lee, Byoung Cheun;Kim, Suejin;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.948-953
    • /
    • 2010
  • In this study, degradation of estrone (E1) and $17{\alpha}$-ethynylestradiol (EE2) by gamma-irradiation and subsequent reduction of estrogenic activity as a function of absorbed dose were conducted using the yeast two-hybrid assay. Relative potency of E1 and EE2 compared to estrogenic activity of $17{\beta}$-estradiol (E2) was found to be 0.0144 and 0.1605, respectively. More than 90% of E1 and EE2 (both $5.0{\times}10^{-6}M$) was removed at an absorbed dose of 5 kGy, but more than 40% of estrogenic activity still remained. The addition of $TiO_2$ catalyst appeared to improve the removal efficiency of E1 and decrease estrogenic activity while there was no significant effect for EE2. Additionally, the calculated estrogenic activity of E1 and EE2 based on a regression model was well correlated with the observed activity.

Effect of Heat-Treated Temperature on Surface Crystal Structure and Catalytic Activity of ACF/ZnO Composite under Ultraviolet Irradiation and Ultrasonication

  • Zhang, Kan;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.136-141
    • /
    • 2010
  • ACF/ZnO photocatalyst was synthesized by a sol-gel method using activated carbon fiber (ACF) and Zn $(NO_3)_2$ as precursors. Samples were characterized by Brunauer-Emmett-Teller measurements (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The XRD results showed that ACF/ZnO composites only included a hexagonal phase by heat-treated temperature at $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, and $700^{\circ}C$. The SEM analysis revealed that the ACF/ZnO composites did not exhibit any morphological changes of the catalyst surface according to the different heat-treated temperatures. The photocatalytic activity of the samples was tested for degradation of methylene blue (MB) solutions under ultraviolet (UV) light and ultrasonication respectively. The results showed that the photocatalytic activity of ACF/ZnO composites heat-treated at $500^{\circ}C$ was higher than other samples, which is ascribed to the fine distribution of ZnO particles on the surface of the ACF. In addition, an ultrasound of low power (50 W) was used as an irradiation source to successfully induce ACF/ZnO composites to perform sonocatalytic degradation of MB. Results indicated that the sonocatalytic method in the presence of ACF/ZnO composites is an advisable choice for the treatments of organic dyes.

Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor (하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구)

  • Hwang, Cheol-Hong;Jeong, Yeong-Sik;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.583-592
    • /
    • 2001
  • The combustion characteristics of the hybrid catalytic(catalytic+thermal) combustor with a lean methane-air mixture on platinum catalyst were investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. for the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. The effect of operation conditions such as equivalence ratio, temperature, velocity, pressure and diameter of the monolith channel at the entrance were studied. In thermal combustor, the production of N$_2$O was more dominant than that of NO due to the relative importance of the reaction N$_2$+O(+M)→N$_2$O(+M). Finally the productions of CO and NOx by amount of methane addition were studied.

A Study on the Preparation of Durable Softening Water Repellents by Blends of Fatty Carbamide/Wax/Acrylic Copolymer(IV);Water Repelling Treatment of P/C Blended Fabrics (지방산 카르바미드/왁스/아크릴 공중합체의 블렌드에 의한 내구유연발수제의 제조에 관한 연구 (IV);P/C 혼방직물에의 발수처리)

  • Park, Hong-Soo;Bae, Jang-Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.51-58
    • /
    • 1995
  • To prepare a durable softening water repellent, quaternized octadecyl methacrylate-2-diethyl-aminoethyl methacrylate as a mother resin and quaternized 1, 3-dioctadecyl-2, 7-dioxy-6, 8-di(2-hydroxyethyl)-1, 3, 6, 8-tetraazacyclodecane which increase the softening effect and the hydrostatic pressure blended with waxes and their emulsifier in various proportions to give water repellent PADWC. As the results of the measurement of water repellency, washable, tear strength and crease recovery to polyestercotton(P/C) blended fabrics treated with PADWC only or addition of textile finishing resin, the physical properties were increased. There was no significant lowering effect in water repellency when PADWC was treated the antistatic agent by the one-bath method, and the effect of water repellency by the adding the catalyst was studied. PADWC was confirmed as durable water repellent with the results of making little difference of water repellency as ${\pm}5$ point after and before washing.

Electrochemical Conversion of Carbon Dioxide (이산화탄소의 전기화학적 변환)

  • Song, Ji-Eun;Shin, Woon-Sup
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.131-141
    • /
    • 2009
  • The conversion of carbon dioxide to value-added compounds has been attracted to solve the environmental problems due to the climate change caused by greenhouse effect in addition to recycle the abundant and renewable carbon source. For utilizing carbon dioxide to useful compounds, the development of catalysts and optimization of experimental conditions are indispensable since carbon dioxide is the most stable one among carbon compounds and the a certain amount of energy is required for the carbon dioxide conversion. The technologies developed for the electrochemical carbon dioxide conversion were reviewed in terms of electrocatalyst which can be electrode material, inorganic complex, and enzyme. This field should be developed further since no good catalyst having selectivity, efficiency, and stability all together.

Characterization of NiSO4 Supported on Fe2O3 and Catalytic Properties for Ethylene Dimerization

  • Pae, Young-Il;Sohn, Jong-Rack
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1273-1279
    • /
    • 2007
  • The NiSO4 supported on Fe2O3 catalysts were prepared by the impregnation method. No diffraction line of nickel sulfate was observed up to 30 wt %, indicating good dispersion of nickel sulfate on the surface of Fe2O3. The addition of nickel sulfate to Fe2O3 shifted the phase transition of Fe2O3 (from amorphous to hematite) to higher temperatures because of the interaction between nickel sulfate and Fe2O3. 20-NiSO4/Fe2O3 containing 20 wt % of NiSO4 and calcined at 500 oC exhibited a maximum catalytic activity for ethylene dimerization. The initial product of ethylene dimerization was found to be 1-butene and the initially produced 1-butene was also isomerized to 2-butene during the reaction. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method.