Browse > Article
http://dx.doi.org/10.5229/JKES.2009.12.2.131

Electrochemical Conversion of Carbon Dioxide  

Song, Ji-Eun (Department of Chemistry, Interdisciplinary Program of Integrated Biotechnology, and Inorganic and Bio-Materials Center of BK21, Sogang University)
Shin, Woon-Sup (Department of Chemistry, Interdisciplinary Program of Integrated Biotechnology, and Inorganic and Bio-Materials Center of BK21, Sogang University)
Publication Information
Journal of the Korean Electrochemical Society / v.12, no.2, 2009 , pp. 131-141 More about this Journal
Abstract
The conversion of carbon dioxide to value-added compounds has been attracted to solve the environmental problems due to the climate change caused by greenhouse effect in addition to recycle the abundant and renewable carbon source. For utilizing carbon dioxide to useful compounds, the development of catalysts and optimization of experimental conditions are indispensable since carbon dioxide is the most stable one among carbon compounds and the a certain amount of energy is required for the carbon dioxide conversion. The technologies developed for the electrochemical carbon dioxide conversion were reviewed in terms of electrocatalyst which can be electrode material, inorganic complex, and enzyme. This field should be developed further since no good catalyst having selectivity, efficiency, and stability all together.
Keywords
Electrochemical; Conversion; Carbon dioxide; Electrocatalytic; Reduction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 I. Bhugun, D. Lexa, and J. M. Saveant, 'Ultraefficient selective homogeneous catalysis of the electrochemical reduction of carbon dioxide by an iron(0)porphyrin associated with a weak Broensted acid cocatalyst', J. Am. Chem. Soc., 116, 5015 (1994)   DOI   ScienceOn
2 K. Sugimura, S. Kuwabata, and H. Yoneyama, 'Electrochemical fixation of carbon dioxide in oxoglutaric acid using an enzyme as an electrocatalyst', J. Am. Chem. Soc., 111, 2361 (1989)   DOI
3 S. Kuwabata, N. Morishita, and H. Yoneyama, 'Electrochemical Fixation of $CO_{2}$ in Acetyl-coenzyme A to Yield Pyruvic Acid Using Pyruvate Dehydrogenase Complexes as an Electrocatalyst', Chem. Lett., 1151 (1990)
4 S. Kuwabata, R. Tsuda, and H. Yoneyama, 'Electrochemical conversion of carbon dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts', J. Am. Chem. Soc., 116, 5437 (1994)   DOI   ScienceOn
5 W. Shin, S. H. Lee, J. W. Shin, S. P. Lee, and Y. Kim, 'Highly Selective Electrocatalytic Conversion of $CO_{2}$ to CO at −0.57V (NHE) by Carbon Monoxide Dehydrogenase from Moorella thermoacetica', J. Am. Chem. Soc., 125, 14689 (2003)   DOI   ScienceOn
6 J. W. Shin, Y. Kim, S. H. Lee, S. P. Lee, M. Lim, J. Song, and W. Shin, 'Effect of pH and Temperature on the Electrochemical Reduction of Carbon Dioxide by Carbon Monoxide Dehydrogenase', J. Kor. Electrochem. Soc., 265 (2007)   과학기술학회마을   DOI   ScienceOn
7 J. W. Shin, Y. Kim, J. Song, S. H. Lee, S. P. Lee, H. Lee, M. Lim, and W. Shin, 'Effect of Electrode Materials and Applied Potential in Electrocatalytic Reduction of Carbon Dioxide by Carbon Monoxide Dehydrogenase', J. Kor. Electrochem. Soc., 165 (2008)   과학기술학회마을   DOI   ScienceOn
8 M. Beley, J. P. Collin, R. Ruppert, and J. P. Sauvage, 'Electrocatalytic Reduction of $CO_{2}$ by Ni $Cyclam^{2+}$ in Water: Study of the Factors Affecting the Efficiency and the Selectivity of the Process', J. Am. Chem. Soc., 108, 7461 (1986)   DOI   ScienceOn
9 J. P. Collin, A. Jouaiti, and J. P. Sauvage, 'Electrocatalytic Properties of $Ni(cyclam)^{2+}$ and $Ni_{2}(biscyclam)^{4+}$ with Respect to $CO_{2}$ and $H_{2}O$ Reduction', Inorg. Chem., 27, 1986 (1988)   DOI
10 B. P. Sullivan, C. M. Bolinger, D. Conrad, W. J. Vining, and T. J. Meyer, 'One- and two-electron pathways in the electrocatalytic reduction of $CO_{2}$ by fac-Re(bpy)$(CO)_{3}$Cl (bpy = 2,2'-bipyridine)', J. Chem. Soc., Chem. Commun, 1414 (1985)
11 C. M. Bolinger, B. P. Sullivan, D. Conrad, J. A. Gilbert, N. Story, and T. J. Meyer, 'Electrocatalytic reduction of $CO_{2}$ based on polypyridyl complexes of rhodium and ruthenium', J. Chem. Soc., Chem. Commun., 796 (1985)
12 T. Saeki, K. Hashimoto, and A. Fujishima, 'Electrochemical Reduction of $CO_{2}$ with High Current Density in a $CO_{2}$-Methanol Medium', J. Phys. Chem., 99, 8440 (1995)   DOI   ScienceOn
13 H. Ishida, K. Tanaka, and T. Tanaka, 'Electrochemical $CO_{2}$ Reduction Catalyzed by $[Ru(bpy)_{2}(CO)_{2}]^{2+}$ and $[Ru(bpy)_{2}(CO)CI]^{+}$. The Effect of pH on the Formation of CO and HCOO-', Organometallics, 6, 181 (1987)   DOI
14 C. M. Bolinger, N. Story, B. P. Sullivan, and T. J. Meyer, 'Electrocatalytic reduction of carbon dioxide by 2,2'-bipyridine complexes of rhodium and iridium', Inorg. Chem., 27, 4582 (1988)   DOI
15 N. Sonoyama, M. Kirii, and T. Sakata, 'Electrochemical reduction of $CO_{2}$ at metal-porphyrin supported gas diffusion electrodes under high pressure $CO_{2}$', Electrochem. Comm., 213 (1999)   DOI   ScienceOn
16 S. Kaneco, K. Ibiza, K. Hiei, K. Ohta, T. Mizuno, and T. Suzuki, 'Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH:methanol', Electrochim. Acta, 44, 4701 (1999)   DOI   ScienceOn
17 H. Yano, T. Tanaka, M. Nakayama, and K. Ogura, 'Selective electrochemical reduction of $CO_{2}$ to ethylene at a three-phase interface on copper(I) halide-confined Cumesh electrodes in acidic solutions of potassium halides', J. Electroanal. Chem., 565, 287 (2004)   DOI   ScienceOn
18 M. Todoroki, K. Hara, A. Kudo, and T. Sakata, 'Electrochemical reduction of high pressure $CO_{2}$ at Pb, Hg and In electrodes in an aqueous $KHCO_{3}$ solution', J. Electroanal. Chem., 394, 199 (1995)   DOI   ScienceOn
19 R. L. Cook, R. C. MacDuff, A. F. Sammells, and U. S. Patent, 4, 897, 167 (1990)
20 T. Kuniko, T. Fudeko, K. Masahiro, A. Yosho, and A. Makoto, Bull. of the Faculty of Human Env. Sci., 36, 13 (2005)
21 K. Hara, N. Sonoyama, and T. Sakata, 'Eletrocatalytic Fiscer-Tropsch Reactions. Formation of Hydrocarbon and Oxygen-Containing Compounds from CO on a Pt Gas Diffusion Electrode Bull.' Chem. Soc. Jpn., 70, 745 (1997)   DOI   ScienceOn
22 T. Yamamoto, D. A. Tryk, K. Hashimoto, A. Fujishima, and M, Okawa, 'Electrochemical Reduction of $CO_{2}$ in the Micropores of Activated Carbon Fibers', J. Electrochem. Soc., 147, 3393 (2000)   DOI   ScienceOn
23 K. W. Frese_Jr. and S. Leach, 'Electrochemical Reduction of Carbon Dioxide to Methane, Methanol, and CO on Ru Electrodes', J. Electrochem. Soc., 132, 259 (1985)   DOI   ScienceOn
24 D.A. Tryk and A. Fujishima, 'Electrochemists enlisted in war', Interface, 32 (2001)
25 Maria Jitaru, 'ELECTROCHEMICAL CARBON DIOXIDE REDUCTION - FUNDAMENTAL AND APPLIED TOPICS', J. Univ. Chem. Tech. and Metal., 42, 333 (2007)
26 S. Kaneco, K. Iiba, K. Ohta, T. Mizuno, and A. Saji, 'Electrochemical reduction of $CO_{2}$ at an Ag electrode in KOH-methanol at low temperature', Electrochim. Acta, 44, 573 (1998)   DOI   ScienceOn
27 Y. Hori, K. Kikuchi, and S. Suzuki, 'Production of CO and $CH_{4}$ in electrochemical reduction of $CO_{2}$ at metal electrode in aqueous hydrogencarbonate solution', Chem. lett., 1695 (1985)
28 Y. Hori, I. Takahashi, O. Koga, and N. Hoshi, 'Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes', J. Mol. Catal. A, 199, 39 (2003)   DOI   ScienceOn
29 Y. Hori, K. Kikuchi, A. Murata, and S. Suzuki, 'Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution', Chem. lett., 897 (1986)
30 I. Takahashi, O. Koga, N. Hoshi, and Y. Hori, 'Electrochemical reduction of $CO_{2}$ at copper single crystal Cu(S)-[n(111) ${\times}$ (111)] and Cu(S)-[n(110) ${\times}$ (100)] electrodes', J. Electroanal. Chem., 533, 135 (2002)   DOI   ScienceOn
31 H. Shibata and J. A. Moulijn, 'Enabling Electrocatalytic Fischer–Tropsch Synthesis from Carbon Dioxide Over Copper-based Electrodes', Catal Lett, 123, 186 (2008)   DOI   ScienceOn
32 M. Gattrell, N. Gupta, and A. Co, 'Electrochemical reduction of $CO_{2}$ to hydrocarbons to store renewable electrical energy and upgrade biogas', Energy Conv. Man. 48, 1255 (2007)   DOI   ScienceOn
33 E. E. Benson, C. P. Kubiak, A. J. Sathrum, and J. M. Smieja, 'Electrocatalytic and homogeneous approaches to conversion of $CO_{2}$ to liquid fuels', Chem. Soc. Rev., 38, 89 (2009)   DOI   ScienceOn
34 B. Gao, C. Peng, G. Z. Chen, and G. Li Puma, 'Photoelectro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/$TiO_{2}$) composite prepared by a novel surfactant wrapping sol-gel method', App. Cat. B: Env. 85, 17 (2008)   DOI   ScienceOn
35 O. K. Varghese, M. Paulose, T. J. LaTempa, and C. A. Grimes, 'High-Rate Solar Photocatalytic Conversion of $CO_{2}$ and Water Vapor to Hydrocarbon Fuels', Nano Lett., 9, 731 (2009)   DOI   ScienceOn
36 D. W. DeWulf, T. Jin, and A. J. Bard, 'Electrochemical and Surface Studies of Carbon Dioxide Reduction to Methane and Ethylene at Copper Electrodes in Aqueous Solutions', J. Electrochem. Soc., 136, 1686 (1989)   DOI   ScienceOn
37 K.Y. Koo, H.S. Roh, U. H. Jung, D. J.Seo, Y.S. Seo, and W. L. Yoon, 'Combined $H_{2}O$ and $CO_{2}$ reforming of $CH_{4}$ over nano-sized Ni/MgO-$AI_{2}O_{3}$ catalysts for synthesis gas production for gas to liquid (GTL):Effect of Mg/Al mixed ratio on coke formation', Catalysis Today, (2009), in press   DOI   ScienceOn
38 Martin, M. H. 'Chemical Fixation of Carbon Dioxide', 67, CRC Press (1993)
39 M. Azuma, K. Hoshimoto, M. Hiramoto, M. Watanabe, and T. Sakuta, 'Electrochemical Reduction of Carbon Dioxide on Various Metal Electrodes in Low-Temperature Aqueous $KHCO_{3}$ Media', J. Electrochem. Soc., 137, 1772 (1990)   DOI
40 R. Wang, H.Y. Zhang, P.H.M. Feron, and D.T. Liang, 'Influence of membrane wetting on $CO_{2}$ capture in microporous hollow fiber membrane contactors', Separ. and Purif. Tech., 46, 33 (2005)   DOI   ScienceOn
41 D. Daya, R. J. Evansb, J. W. Leec, and D. Reicosky, 'Economical $CO_{2}$, $SO_{X}$, and $NO_{X}$ capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration', Energy, 30, 2558 (2005)   DOI   ScienceOn
42 O. Bolland and H. Undrum, 'A novel methodology for comparing $CO_{2}$ capture options for natural gas-fired combined cycle plants', Adv. Env. Res., 7, 901 (2003)   DOI   ScienceOn
43 M. J. Choi and D.H. Cho, 'Research Activities on the Utilization of Carbon Dioxide in Korea', Clean, 36, 426 (2008)   DOI   ScienceOn
44 Jeffrey C. S. Wu, 'Photocatalytic Reduction of Greenhouse Gas $CO_{2}$ to Fuel', Catal Surv Asia, 13, 30 (2009)   DOI   ScienceOn
45 K. M. K. Yu, I. Curcic, J. Gabriel, and S. C. E. Tsang, 'Recent Advances in $CO_{2}$ Capture and Utilization', ChemSusChem, 1, 893 (2008)   DOI   ScienceOn
46 K. Fang, D. Li, M. Lin, M. Xiang, W. Wei, and Y. Sun, 'A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas', Catalysis Today, (2009), in press   DOI   ScienceOn
47 Istadi and N. A. S. Amin, 'Co-generation of synthesis gas and $C_{2+}$ hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review', Fuel, 85, 577 (2006)   DOI   ScienceOn
48 G. R. Dey, 'Chemical Reduction of $CO_{2}$ to Different Products during Photo Catalytic Reaction on $TiO_{2}$ under DiverseConditions: an Overview', J. Nat. Gas Chem., 16, 217 (2007)   DOI   ScienceOn
49 Marland, G., T.A. Boden, and R. J. Andres (2003). 'Global, Regional, and National $CO_{2}$ Emissions' in Trends: A Compendium of Data on Global Change. Oak Ridge, Tenn., U.S.A.: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy
50 IPCC (Inter-governmental Panel on Climate Change) 제4차 보고서 (2007)
51 Keeling, C.D. and T.P. Whorf (2004). 'Atmospheric $CO_{2}$ records from sites in the SIO air sampling network' in Trends: A Compendium of Data on Global Change. Oak Ridge, Tenn., U.S.A.: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy
52 J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R.D. Srivastava, 'Advances in $CO_{2}$ capture technology-The U.S. Department of Energy's Carbon Sequestration Program', Int. J. GHG control 2, 9 (2008)   DOI   ScienceOn
53 C. Pevida, M.G. Plaza, B. Arias, J. Fermoso, F. Rubiera, and J.J. Pis, 'Surface modification of activated carbons for $CO_{2}$ capture', App. Surf. Sci., 254, 7165 (2008)   DOI   ScienceOn
54 Y. Hori, A. Murata, K. Kikuchi, and S. Suzuki, 'Electrochemical reduction of carbon dioxides to carbon monoxide at a gold electrode in aqueous potassium hydrogen carbonate', J. Chem. Soc., Chem. Commun., 728 (1987)   DOI   ScienceOn
55 M. Beley, J. P. Collin, R. Ruppert, and J. P. Sauvage, 'Nickel(II)-cyclam: an extremely selective electrocatalyst for reduction of $CO_{2}$ in water', J. Chem. Soc., Chem. Commun., 1984, 1315
56 I. Bhugun, D. Lexa, and J. M. Savèant, 'Catalysis of the Electrochemical Reduction of Carbon Dioxide by Iron(0)Porphyrins: Synergystic Effect of Weak Bronsted Acids', J. Am. Chem. Soc., 118, 1769 (1996)   DOI   ScienceOn