Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.4.192

Synthesis and Property of Carbon Nanotube-Supported Pd and Pt Nanoparticles  

Kim, Hyung-Kun (Department of Advanced Materials Engineering, Dankook University)
Lee, Rhim-Youl (Department of Advanced Materials Engineering, Dankook University)
Publication Information
Korean Journal of Materials Research / v.19, no.4, 2009 , pp. 192-197 More about this Journal
Abstract
Carbon nanotubes (CNT) were used as a catalyst support where catalytically active Pd and Pt metal particles decorated the outside of the external CNT walls. In this study, Pd and Pt nanoparticles supported on $HNO_3$-treated CNT were prepared by microwave-assisted heating of the polyol process using $PdCl_2$ and $H_2PtCl_6{\codt}6H_2O$ precursors, respectively, and were then characterized by SEM, TEM, and Raman. Raman spectroscopy showed that the acid treated CNT had a higher intensity ratio of $I_D/I_G$ compared to that of non-treated CNT, indicating the formation of defects or functional groups on CNT after chemical oxidation. Microwave irradiation for total two minutes resulted in the formation of Pd and Pt nanoparticles on the acid treated CNT. The sizes of Pd and Pt nanoparticles were found to be less than 10 nm and 3 nm, respectively. Furthermore, the $SnO_2$ films doped with CNT decorated by Pd and Pt nanoparticles were prepared, and then the $NO_2$ gas response of these sensor films was evaluated under $1{\sim}5\;ppm$ $NO_2$ concentration at $200^{\circ}C$. It was found that the sensing property of the $SnO_2$ film sensor on $NO_2$ gas was greatly improved by the addition of CNT-supported Pd and Pt nanoparticles.
Keywords
microwave; polyol; Pd and Pt nanoparticle; CNT; $NO_2$ sensor;
Citations & Related Records

Times Cited By SCOPUS : 2
연도 인용수 순위
1 X. Li and I. M. Hsing, Electrochimica Acta, 51, 5250 (2006)   DOI   ScienceOn
2 R. Yu, L. Chen, Q. Liu, J. Lin, K. L. Tan, S. C. Ng, H. S. O. Chan, G. O. Xu and T. S. A. Hor, Chem. Mater., 10, 718 (1998)   DOI   ScienceOn
3 L. K. Kurihara, G. M. Chow and P. E. Schoen, Nanostructured Mater., 5(6), 607 (1995)   DOI   ScienceOn
4 W. Li, C. Liang, W. Zhou, J. Qui, Z. Zhou, G. Sun and Q. Xin, J. Phys. Chem. B, 107, 6292 (2003)   DOI   ScienceOn
5 Z. Q. Tian, S. P. Jiang, Y. M. Liang and P. K. Shen, J. Phys. Chem., B, 110, 5343 (2006)   DOI   ScienceOn
6 W. X. Chen, J. Y. Lee and Z. Liu, Mater. Lett., 58, 3166 (2004)   DOI   ScienceOn
7 O. K. Varghese, P. D. Kichamber, D. Cong, K. G. Ong and E. A. Grines, Sens. Actuators, 81, 32 (2001)   DOI   ScienceOn
8 W. Chen, J. Zhao, J. Y. Lee and Z. Liu, Mater. Chem. Phys., 91, 124 (2005)   DOI   ScienceOn
9 R. Q. Yu, L. W. Chen, Q. P. Liu, J. Y. Lin, K. L. Tan, S. C. Ng, H. Chan, G. O Xu and T. S. Andyhor, Chem. Mater., 10, 718 (1998)   DOI   ScienceOn
10 R. Y. Lee, J. Microelectron. Packag., 12(3), 227 (2005)
11 H. K. Kim and R. Y. Lee, J. Microelectron. Packag., 15(4), 101 (2008)
12 V. Lordi N. Yao and J. Wei, Chem. Mater., 13, 733 (2001)   DOI   ScienceOn
13 Z. L. Liu, X. H. Lin. J. Y. Lee, W. Zhang, M. Han and L. M. Gan, Langmuir, 18, 4054 (2002)   DOI   ScienceOn
14 B. Rajesh, K. R. Tampi, J. M. Bonard, N. Xanthopolus, H. J. Mathieu and B. Viswannathan, J. Phys. Chem., B 107, 2701 (2003)   DOI   ScienceOn
15 S. Ayyappen, R. S. Gopalan, G. N. Subbanna and C. N. R. Rao, J. Mater. Res., 12(2), 398 (1997)   DOI   ScienceOn
16 F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Y. Silvert and K. T. Elhsissen, Nanostructed Mater., 11 (8), 1277 (1999)   DOI   ScienceOn
17 B. Xue, P. Chen, Q. Hang, J. Y. Lin and K. L. Tan, J. Mater. Chem., 11, 2378 (2001)   DOI   ScienceOn