• Title/Summary/Keyword: Nitrogen deposition

Search Result 385, Processing Time 0.035 seconds

A Study on the Phosphorous Concentration and Rs Property of the Doped Polysilicon by LPCVD Method of Batch type (Batch 형태 LPCVD법에 의한 폴리실리콘의 인농도 및 Rs 특성에 관한 연구)

  • 정양희;김명규
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.195-202
    • /
    • 1998
  • The LPCVD system of batch type for the massproduction of semiconductor fabrication has a problem of phosphorous concentration uniformity in the boat. In this paper we study an improvement of the uniformity for phosphorous concentration and sheet resistance. These property was improved by using the nitrogen process and modified long nozzle for gas injection tube in the doped polysilicon deposition system. The phosphorous concentration and its uniformity for polysilicon film are measured by XRF(X-ray Fluorescence) for the conventional process condition and nitrogen process. In conventional process condition, the phosphorous concentration, it uniformity and sheet resistance for polysilicon film are in the range of 3.8~5.4$\times$10\ulcorner atoms/㎤, 17.3% and 59~$\Omega$/ , respectively. For the case of nitrogen process the corresponding measurements exhibited between 4.3~5.3$\times$10\ulcorner atoms/㎤, 10.6% and 58~81$\Omega$/ . We find that in the nitrogen process the uniformity of phosphorous concentration improved compared with conventional process condition, however, the sheet resistance in the up zone of the boat increased about 12 $\Omega$/ . In modified long nozzle, the phosphorous concentration, its uniformity and sheet resistance for polysilicon films are in the range of 4.5~5.1$\times$10\ulcorner atoms/㎤, 5.3% and 60~65$\Omega$/ respectively. Annealing after $N_2$process gives the increment of grain size and the decrement of roughness. Modification of nozzle gives the increment of injection amount of PH$_3$. Both of these suggestion result in the stable phosphorous concentration and sheet resistance. The results obtained in this study are also applicable to process control of batch type system for memory device fabrication.

  • PDF

Effects of Traffic Volume and Air Quality on the Characteristic of Urban Park Soil (교통량과 대기질이 도시 공원 토양 특성에 미치는 영향)

  • Joo, Sunyoung;Lee, Hyunjin;Jeon, Juhui;Seo, Inhye;Yoo, Gayoung
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.77-82
    • /
    • 2022
  • This study aims to understand how mobile and stationary air pollution sources affect the air quality and soil properties in urban parks. We selected three sites of urban parks in Seoul as follows: Ha-neul Park in Mapo-gu (Site_M), Ill-won Eco-Park in Gangnam-gu (Site_G), and Yangjae Citizen's Forest in Seocho-gu (Site_Y), and compared the results of each site's traffic volume, air quality concentration, and soil analysis. Traffic volume was high in Site_M, followed by Site_G and Y; Site_M and G were closer to the resource recovery facility than Site_Y. Hence, we hypothesized that PM and NO2 concentrations in the atmosphere were higher in Site_M than Site_G and Y, causing different soil nitrogen content among sites due to different atmospheric deposition. Consistent with our hypothesis, the concentrations of PM2.5 and NO2 were higher in Site_M and G than Site_Y, while Site_Y had higher PM10 than other sites. The soil NO3- contents showed no significant difference among three sites, whereas the soil NH4+ content was extremely high in Site_Y. This high content of soil NH4+ is thought to be due to acidification from excessive fertilization. Lower soil pH of Site_Y further supported the evidence of heavy fertilization in this site. Overall nitrogen dynamics implies that soil nitrogen status is more influenced by park management such as fertilization rather than atmospheric deposition. Despite of lower soil NH4+ content of Site_M and G than Y, vegetation vitality looked similar among three sites. This indirectly indicates that excessive fertilizer input in urban park management needs to be reconsidered. This study showed that even if the air quality was different due to mobile and stationary sources, it did not directly affect the soil nitrogen nutrient status of the adjacent urban park.

Intragastrically Applicated CCl4-Thiopental Sodium Enhanced Lipid Peroxidation and Liver Fibrosis (Cirrhosis) in Rat: Malonedialdehyde as a Parameter of Lipid Peroxidation Correlated with Hydroxyproline as a Parameter of Collagen Synthesis (Deposition)

  • Kim, Ki-Young;Cho, Syung-Eun;Yu, Byung-Soo
    • Toxicological Research
    • /
    • v.25 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • We investigated the pathogenesis of liver tissue damage during the lipid peroxidation and fibrogenesis with the observation of correlations between the parameters of collagen synthesis (and deposition) and lipid peroxidation in liver fibrosis (cirrhosis) rats. Rats were randomly divided into two groups, normal and $CCl_4$-thiopental sod. intoxicated group. And the one group was treated intragastrically with the mixture of $CCl_4$-thiopental sod. 3 times per week for 3 weeks. The liver tissue and sera were used for the measurement of hydroxyproline (HYP), malonedialdehyde (MDA) and superoxide dismutase (SOD). Biochemical parameters such as aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total-bilirubin and blood urea nitrogen (BUN) were measured. Additionally, the expression of collagen ${\alpha}1$(III) and $\beta$-actin mRNA was observed by RTPCR. The histological change in liver tissue was also observed by Masson's trichrome and H&E staining. Correlation analysis was carried by Spearman's rho method. All biochemical parameters except total-bilirubin were significantly higher in the $CCl_4$-thiopental sod. treated group than that of the normal group (p < 0.01). In the $CCl_4$-thiopental sod. treated group, Hyp as a parameter of collagen synthesis (deposition) and MDA as a metabolite of lipid peroxidation, were significantly elevated by 1.98 and 2.11 times higher than that of the normal group (p < 0.001) respectively. The activity of SOD in the $CCl_4$-thiopental sod. treated group is decreased significantly by 44.8% (p < 0.001). And collagen ${\alpha}1$(III) mRNA was more expressed in the $CCl_4$-thiopental sod. treated group than that of the normal group. However, the expression of $\beta$-actin mRNA is showed similar in both of groups. A good correlation was observed between the content of hyp and MDA concentration (r = 0.70, n = 40) in the two groups. And the correlation between the levels of hyp and SOD (r = -0.71, n = 25) is also reliable. However, no correlation were observed between MDA concentration and SOD (r = -0.40, n = 25) in the two groups. Elevated levels of MDA in $CCl_4$-thiopental sod. treated rats indicated enhancement of lipid peroxidation, which is accompanied by a decrease in SOD activity. Moreover, we could confirm that the parameters of collagen synthesis (and deposition) is in good correlation with the metabolite of lipid peroxidation (MDA) and the lipid peroxidation antagonizing enzyme (SOD). Hence, we propose that (1) lipid peroxidation and collagen synthesis (and deposition) could be enhanced by intragastrically application of $CCl_4$-thiopental sod. during a short terms. And (2) the intoxication of $CCl_4$-thiopental sod. could be used for monitoring of lipid peroxidation and collagen synthesis (and deposition) for test of antioxidant and antifibrotic agent.

HIPIMS Arc-Free Reactive Deposition of Non-conductive Films Using the Applied Material ENDURA 200 mm Cluster Tool

  • Chistyakov, Roman
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.96-97
    • /
    • 2012
  • In nitride and oxide film deposition, sputtered metals react with nitrogen or oxygen gas in a vacuum chamber to form metal nitride or oxide films on a substrate. The physical properties of sputtered films (metals, oxides, and nitrides) are strongly influenced by magnetron plasma density during the deposition process. Typical target power densities on the magnetron during the deposition process are ~ (5-30) W/cm2, which gives a relatively low plasma density. The main challenge in reactive sputtering is the ability to generate a stable, arc free discharge at high plasma densities. Arcs occur due to formation of an insulating layer on the target surface caused by the re-deposition effect. One current method of generating an arc free discharge is to use the commercially available Pinnacle Plus+ Pulsed DC plasma generator manufactured by Advanced Energy Inc. This plasma generator uses a positive voltage pulse between negative pulses to attract electrons and discharge the target surface, thus preventing arc formation. However, this method can only generate low density plasma and therefore cannot allow full control of film properties. Also, after long runs ~ (1-3) hours, depends on duty cycle the stability of the reactive process is reduced due to increased probability of arc formation. Between 1995 and 1999, a new way of magnetron sputtering called HIPIMS (highly ionized pulse impulse magnetron sputtering) was developed. The main idea of this approach is to apply short ${\sim}(50-100){\mu}s$ high power pulses with a target power densities during the pulse between ~ (1-3) kW/cm2. These high power pulses generate high-density magnetron plasma that can significantly improve and control film properties. From the beginning, HIPIMS method has been applied to reactive sputtering processes for deposition of conductive and nonconductive films. However, commercially available HIPIMS plasma generators have not been able to create a stable, arc-free discharge in most reactive magnetron sputtering processes. HIPIMS plasma generators have been successfully used in reactive sputtering of nitrides for hard coating applications and for Al2O3 films. But until now there has been no HIPIMS data presented on reactive sputtering in cluster tools for semiconductors and MEMs applications. In this presentation, a new method of generating an arc free discharge for reactive HIPIMS using the new Cyprium plasma generator from Zpulser LLC will be introduced. Data (or evidence) will be presented showing that arc formation in reactive HIPIMS can be controlled without applying a positive voltage pulse between high power pulses. Arc-free reactive HIPIMS processes for sputtering AlN, TiO2, TiN and Si3N4 on the Applied Materials ENDURA 200 mm cluster tool will be presented. A direct comparison of the properties of films sputtered with the Advanced Energy Pinnacle Plus + plasma generator and the Zpulser Cyprium plasma generator will be presented.

  • PDF

Synthesis of Boron-Nitride Film by Plasma Assisted Chemical Vapor Deposition Using $BCl3-NH3-Ar$ Mixed Gas ($BCl3-NH3-Ar$계의 플라즈마화학증착공정을 이용한 질화붕소막의 합성)

  • 박범수;백영준;은광용
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.249-256
    • /
    • 1997
  • The effect of process parameter of plasma assisted chemical vapor deposition (PACVD) on the variation of the ratio between cubic boron nitride (c-BN) and hexagonal boron nitride (h-BN) in the film was in-vestigated. The plasma was generated by electric power with the frequency between 100 and 500 KHz. BCl3 and NH3 were used as a boron and nitrogen source respectively and Ar and hydrogen were added as a car-rier gas. Films were composed of h-BN and c-BN and its ratio varied with the magnitude of process parameters, voltage of the electric power, substrate bias voltage, reaction pressure, gas composition, sub-strate temperature. TEM observation showed that h-BN phase was amorphous while crystalline c-BN par-ticle was imbedded in h-BN matrix in the case of c-BN and h-BN mixed film.

  • PDF

NO2 gas sensing characteristics of patterned carbon nanotube mats (패턴이 형성된 탄소나노튜브 매트의 이산화질소 감응 특성)

  • Cho, Woo-Sung;Moon, Seung-Il;Paek, Kyeong-Kap;Park, Jung-Ho;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.199-204
    • /
    • 2006
  • Carbon nanotube (CNT) mats grown by thermal chemical vapor deposition on a micromachined substrate with a chrome heater and a diaphragm were investigated as sensing materials of resistive gas sensors for nitrogen dioxide ($NO_{2}$) gas. The aligned CNT mats fabricated into mesh and serpentine shapes by the patterned cobalt catalyst layer. CNT mats showed a p-type electrical resistivity with decreasing electrical resistance upon exposure to $NO_{2}$. All sensors exhibited a reversible response at a thermal treatment temperature of $130^{\circ}C$ for about 5 minutes. The resistance change to $NO_{2}$ of the mesh-shaped CNT mats was larger than that of the serpentine-shaped CNT mats.

High-temperature Oxidation of Nano-multilayered TiAlSiN Filems (나노 다층 TiAlSiN 박막의 고온 산화)

  • Lee, Dong-Bok;Kim, Min-Jeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.189-189
    • /
    • 2016
  • In this study, the Al-rich AlTiSiN thin films that consisted of TiN/AlSiN nano-multilayers were deposited on the steel substrate by magnetron sputtering, and their high-temperature oxidation behavior was investigated, which has not yet been adequately studied to date. Since the oxidation behavior of the films depends sensitively on the deposition method and deposition parameters which affect their crystallinity, composition, stoichiometry, thickness, surface roughness, grain size and orientation, the oxidation studies under various conditions are imperative. AlTiSiN nano-multilayer thin films were deposited on a tool steel substrate, and their oxidation behavior of was investigated between 600 and $1000^{\circ}C$ in air. Since the amount of Al which had a high affinity for oxygen was the largest in the film, an ${\alpha}-Al_2O_3-rich$ scale formed, which provided good oxidation resistance. The outer surface scale consisted of ${\alpha}-Al_2O_3$ incoporated with a small amount of Ti, Si, and Fe. Below this outer surface scale, a thin ($Al_2O_3$, $TiO_2$, $SiO_2$)-intermixed scale formed by the inwardly diffusing oxygen. The film oxidized slower than the $TiO_2-forming$ kinetics and TiN films, but faster than ${\alpha}-Al_2O_3-forming$ kinetics. During oxidation, oxygen from the atmosphere diffused inwardly toward the reaction front, whereas nitrogen and the substrate element of iron diffused outwardly to a certain extent.

  • PDF

Microstructural Evolution of Aluminum Nitride - Yttrium Aluminum Garnet Composite Coatings by Plasma Spraying from Different Feedstock Powders (Aluminum Nitride - Yttrium Aluminum Garnet 분말 특성과 플라즈마 용사 코팅층의 미세조직)

  • So, Woong-Sub;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.106-110
    • /
    • 2011
  • A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.

Characteristics of TiN Films by ion Beam Assisted Deposition (이온빔 보조 증착에 의한 TiN 박막의 특성)

  • Kim, Sang Hyun;Kim, Dae Hyeon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.1
    • /
    • pp.161-166
    • /
    • 2004
  • In this research, TiN films has been grown to the stainless steel substrate by ion beam assisted deposition. TiN film was grown to the nitrogen atmosphere of around $10^{-15}$ Torr with Arion bombardment. The chemical composition, color and adhesion of TiN films were examined as a variation of En(ion energy per atom). The N/Ti ratio increased linearly as the increase of En and saturated around 1.2 at high En. As a results, the bright golden color was obtained when En reached a certain value of Ecn. As a results, the N/Ti ratio is about 0.9.

  • PDF

Effect of hydrogen on the photoluminescence of Silicon nanocrystalline thin films (실리콘 나노결정 박막에서 수소 패시베이션 효과)

  • Jeon, Kyung-Ah;Kim, Jong-Hoon;Kim, Gun-Hee;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1033-1036
    • /
    • 2004
  • Si nanocrystallites thin films on p-type (100) Si substrate have been fabricated by pulsed laser deposition using a Nd:YAG laser. After deposition, samples were annealed at the temperatures of 400 to $800^{\circ}C$. Hydrogen passivation was then performed in the forming gas (95% $N_2$ + 5% $H_2$) for 1 hr. Strong violet-indigo photoluminescence has been observed at room temperature from nitrogen ambient-annealed Si nanocrystallites. The variation of photoluminescence (PL) Properties of Si nanocrystallites thin films has been investigated depending on annealing temperatures with hydrogen passivation. From the results of PL, Fourier transform infrared (FTIR), and high-resolution transmission electron microscopy (HRTEM) measurements, it is observed that the origin of violet-indigo PL from the nanocrystalline silicon in the silicon oxide film is related to the quantum size effect of Si nanocrystallites and oxygen vacancies in the SiOx(x : 1.6-1.8) matrix affects the emission intensity.

  • PDF