Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.2.106

Microstructural Evolution of Aluminum Nitride - Yttrium Aluminum Garnet Composite Coatings by Plasma Spraying from Different Feedstock Powders  

So, Woong-Sub (Department of Nanomaterials Engineering, Chungnam National University)
Baik, Kyeong-Ho (Department of Nanomaterials Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.21, no.2, 2011 , pp. 106-110 More about this Journal
Abstract
A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.
Keywords
AlN-YAG; plasma spraying; spray drying; PAS; porosity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 S. Jiansirisomboon, K. J. D. MacKenzie, S. G. Roberts and P. S. Grant, J. Eur. Ceram. Soc., 23, 961 (2003).   DOI   ScienceOn
2 K. H. Baik, P. S. Grant and B. Cantor, Acta Mater., 52(1), 199 (2004).   DOI   ScienceOn
3 P. Bengtsson and T. Johannesson, J. Therm. Spray Tech., 4(3), 245 (1995).   DOI
4 L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, p. 28-50, John Wiley & Sons, New York, NY (1995).
5 M. Yamada, H. Nakamura, T. Yasui, M. Fukumoto and K. Takahashi, Mater. Trans., 47(7), 1671 (2006).   DOI   ScienceOn
6 L. R. Krishna, D. Sen, Y. S. Rao, G. V. N. Rao and G. Sundararajan, J. Mater. Res., 17(10), 2514 (2002).   DOI   ScienceOn
7 J. S. O’Dell, E. C. Schofield, T. N. McKechnie and A. Fulmer, J. Mater. Eng. Perform., 13(4), 461 (2004).   DOI   ScienceOn
8 K. A. Khor and Y. Li., Mater. Lett., 48(2), 57 (2001).   DOI   ScienceOn
9 M. S. Kong, H. S. Hong, S. K. Lee, M. H. Seo and H. C. Jung, Kor. J. Mater. Res., 17(10), 560 (2007) (in Korean).   과학기술학회마을   DOI   ScienceOn
10 F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi and T. Takahashi, IEEE Trans. Compon. Hybrids Manuf. Technol. 13, 313 (1990).   DOI   ScienceOn
11 H. O. Pierson, Handbook of Refractory Carbides and Nitrides, p. 237-238, Noyes Publications, Park Ridge, NJ, USA (1996).
12 A. W. Weimer, Carbide, Nitride and Boride Materials Synthesis and Processing, p. 3-68, Chapman & Hall, London, UK (1997).
13 A. W. Weimer, G. A. Cochran, G. A. Eisman, J. P. Henley, B. D. Hook, L. K. Mills, T. A. Guiton, A. K. Knudsen, N. R. Nicholas, J. E. Volmering and W. G. Moore, J. Am. Ceram. Soc., 77(1), 3 (1994).   DOI   ScienceOn
14 L. M. Sheppard, Am. Ceram. Soc. Bull., 69(11), 1801 (1990).
15 D. Kent, G. B. Schaffer, T. B. Sercombe and J. Drennan, Scripta Mater., 54(12), 2125 (2006).   DOI   ScienceOn
16 A. Khanna and D. G. Bhat, J. Vac. Sci. Tech., 25(3), 557 (2007).   DOI