• 제목/요약/키워드: Nitrogen Dioxide($NO_2$)

검색결과 234건 처리시간 0.028초

위성 기반 HCHO/NO2 비율을 통한 국내 대류권 오존 민감도 특성 분석 (Characteristic Analysis of Tropospheric Ozone Sensitivity from the Satellite-Based HCHO/NO2 Ratio in South Korea)

  • 장진아;이윤곤;유정아;성경희;김상민
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.563-576
    • /
    • 2023
  • 본 연구에서는 대류권 오존과 전구체인 nitrogen oxides (NOx), volatile organic compounds (VOCs)의 광화학반응 관계를 살펴보고자, Ozone Monitoring Instrument (OMI)와 TROPOspheric Monitoring Instrument(TROPOMI)의 nitrogen dioxide (NO2), formaldehyde (HCHO), OMI/Microwave Limb Sounder (MLS) tropospheric column ozone (TCO), Airkorea 지상측정 ozone (O3) 자료를 분석하였다. OMI 위성자료를 이용하여 2006년부터 2020년까지 장기 변화 경향을 살펴보면 TCO는 동북아시아 지역 전체적으로 증가하는 추세를 보였으며, NO2는 꾸준히 감소하고 HCHO는 계속해서 증가하는 경향성을 보였다. 또한 오존 민감도의 지표인 formaldehyde nitrogen dioxide ratio (FNR)은 점점 증가하고 있으며, 이는 VOC-limited 영역이 감소하고 있음을 의미한다. 본 연구는 한국 지역 오존의 지속적인 증가 원인을 밝히기 위해서 최근 4년 기간(2019~2022년)의 TROPOMI FNR과 지상 측정 O3를 이용하여 국내 오존 생성 민감도 분석을 진행하였다. 기존 선행연구들과 동일하게 국내 대도시 지역에서 VOC-limited 및 Transitional 영역이 나타났으며, 그 외에도 국내 주요 발전소가 위치한 지역에서 VOC-limited 영역이 나타났다. VOC-limited 영역, 즉 NOx가 과도하게 포화되어 있는 영역에서는 NOx 배출 감소가 오히려 적정 반응을 약화시켜 국내 오존 농도 증가를 유도했을 것으로 판단된다. 따라서 VOC-limited 영역이 나타나는 지역에서 오존 농도를 감소시키기 위해서는 NOx의 배출보다 단기적으로 VOC 배출을 감소시켜야 함을 시사한다.

나노펄스 코로나 방전의 온도 변화에 따른 이산화황 및 일산화질소 제거에 관한 실험적 연구 (The Experimental Study on Removal of Sulfur Dioxide and Nitrogen Oxide Using a Nano-Pulse Corona Discharger at Different Temperatures)

  • 한방우;김학준;김용진
    • 한국대기환경학회지
    • /
    • 제27권4호
    • /
    • pp.387-394
    • /
    • 2011
  • A study on the removal of sulfur dioxide and nitrogen oxide was carried out using a non-thermal nano-pulse corona discharger at different gas temperatures. Pulse voltage with a high voltage of 50 kV, a pulse rising time of about 100 ns, a full width at half maximum of about 500 ns and a frequency of 1 kHz was applied to a wire-cylinder corona reactor. Ammonia and propylene gases were added into the corona reactor as additives with a static mixer. Ammonia addition had less effect on $SO_2$ reduction at the higher temperature because of the retardation of ammonium sulfate formation. However, propylene addition enhanced NO reduction at higher temperature due to increased gas mixture. $SO_2$ was further removed at the mixed $SO_2$ and NO gas due to increased $NO_2$ by the conversion of NO. The addition of ammonia and propylene gases was more highly dominant for the removal of sulfur dioxide compared to the sole pulse corona without the additives. However, the specific energy density per unit concentration of pulse corona as well as propylene additive was an important factor to remove NO gas. Therefore, the specific energy density per unit concentration of 0.04 Wh/($m^3{\cdot}ppm$) was necessary for the NO removal of more than 80% with the concentration ratio of 2.0 for propylene and NO. Hydrogen peroxide was another alternative additive to remove both $SO_2$ and NO in the nano-pulse corona discharger.

다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 가스 감응 특성 (Gas sensing characteristics of carbon nanotube gas sensor using a diaphragm structure)

  • 조우성;문승일;김영조;박정호;주병권
    • 센서학회지
    • /
    • 제15권1호
    • /
    • pp.13-19
    • /
    • 2006
  • The micro-gas sensor based on carbon nanotubes (CNTs) was fabricated and its gas sensing characteristics on nitrogen dioxide ($NO_{2}$) have been investigated. The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_{2}$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.

공동주택내 이산화질소(NO2) 및 휘발성유기화합물(VOCs) 노출에 따른 건강 위해성 평가 (Health Risk Assessment by Potential Exposure of NO2 and VOCs in Apartments)

  • 정순원;양원호;손부순
    • 한국환경보건학회지
    • /
    • 제33권4호
    • /
    • pp.242-249
    • /
    • 2007
  • Indoor air quality has become a topic of interest and concern. Especially changes in construction design and the increased use of synthetic products may result in an increasing of complaints and health effects about the quality of indoor air at home. In this study, nitrogen dioxide($NO_2$) and volatile organic compounds(VOCs) within new and established apartments on the basis of 4 years of building year were measured every 3 days consecutively during 60 days. We selected each 10 house in Seoul, Asan and Daegu, respectively, and produced risk numbers for hazard quotients, and predicted increases in incidence of cancer. The calculations were made for the adult with default exposure values and also made for a worst case scenario using Monte-Carlo simulation as describing the reasonable exposure(RME). Mean of Monte carlo analysis by benzene, in the construction under 4 years (male: $9.2{\times}10^{-5}$, female: $1.0{\times}10^{-4}$) and over 4 years (male: $6.8{\times}10^{-5}$, female: $8.3{\times}10^{-5}$) exceeded $10^{-6}$ of permitted standards in US EPA, RME of Monte carlo analysis. In construction under 4 yews (male: $9.9{\times}10^{-3}$, female: $9.6{\times}10^{-3}$) and over 4 years (male: $9.8{\times}10^{-3}$, female: $7.8{\times}10^{-3}$) exceeded $10^{-4}$ of maximum permitted standards in US EPA. The hazard index of non-carcinogenic pollutants by nitrogen dioxide, toluene, m,p-xylene and o-xylene, both male and female in apartment constructed under 4 yews and over 4 years was found less than the permitted standards of hazardous health effects in CTE. Significant cancer risks and non-cancer hazard quotients were predicted in under 4 yews of building year.

주택의 실내공기질 개선 평가 방법 (Evaluation Method for Improvement Efficiency of Indoor Air Quality in Residence)

  • 양원호;손부순;임성국
    • 한국환경보건학회지
    • /
    • 제33권4호
    • /
    • pp.255-263
    • /
    • 2007
  • Indoor air quality is the dominant contributor to total personal exposure because most people spend a majority of their time indoors. The purposes of this study were to evaluate the alternative method for improvement of indoor air quality in house after coating titanium dioxide ($TiO_2$) photocatalyst for interior part of the house using nitrogen dioxide ($NO_2$) multiple measurements. To evaluate the alternative method in indoor environment, daily indoor and outdoor $NO_2$ concentrations of an apartment and a detached house were daily measured for consecutive 21 days in winter and summer, respectively, Another daily 21 measurements were carried out after $TiO_2$ coating on wall paper of interior part in houses. All $NO_2$ concentrations were measured by passive filter badges. Indoor air quality models using mass balance are useful tool to quantify the relationship between indoor air pollution levels, ambient concentrations, and explanatory variables. Using a mass balance model and linear regression analysis, penetration factor (ventilation rate divided by sum of ventilation rate and decay rate) and source strength factor (emission rate divided by sum of ventilation rate and decay rate) were calculated. Subsequently, the decay constants were estimated. In this study. magnitude of improvement of indoor air quality could be evaluated by decay constant.

이산화티타늄을 이용한 대기정화 블록의 질소산화물 제거 성능 평가 (Performance Evaluation of Nitrogen Oxide Removal by Air Purification Blocks with Titanium Dioxide)

  • 오리온;김황희;박성기;차상선;박찬기
    • 한국농공학회논문집
    • /
    • 제62권5호
    • /
    • pp.39-46
    • /
    • 2020
  • This study evaluated the nitrogen oxide (NOx) removal efficiency by air purification concrete blocks with titanium dioxide (TiO2). The concrete in the mixtures had a 30% water:cement ratio, to which TiO2 was added at 0%, 5%, and 10% of cement weight. The compressive strength reduction rate and removal efficiency of NOx were investigated. The result of the compressive strength test in the study indicated that addition rate of TiO2 did not lead to signifcant effect. In terms of the average removal efficiency of NOx, mix No. 1 using a TiO2 mixing ratio of 0% had a removal efficiency of 0.57% on average; thus, the removal effect w as not significant. For the other samples prepared by mixing, the average removal efficiencies for mix No. 2 (5% TiO2) were 58.86% and 62.05% for normal and washing surface treatments, respectively, and those of sample No. 3 (10% TiO2) were 59.94% and 67.61%. mixs No. 4 (5%) and No. 5 (10%), in which TiO2 diluted with distilled water was sprayed onto the block surface, had an average NOx removal efficiency of 61.72% and 68.48%, respectively. In terms of NOx removal efficiency, Mixs No. 3 and No. 5 with 10% TiO2 were better than Mixs No. 2 and No. 4 with 5% TiO2. In addition, analyzing the NOx removal efficiency results from the fixing method, it was capable to apply mixing (washing) and the diluted spray methods. Therefore, it was found that the diluted spray method applied in this study can be employed in any manufacture of air purification concrete blocks.

복합흡수공정에서 CO$_2$/NO$_2$ 동시제거 시 AMP(2-amino-2-methyl-1-propanol)에 Ammonia 첨가가 흡수속도에 미치는 영향 (Effect of Added NH$_3$ to AMP on Absorption Rate for Simultaneous Removal of CO$_2$/NO$_2$ in Composite Absorption Process)

  • 서종범;최원준;문승재;이규홍;오광중
    • 대한환경공학회지
    • /
    • 제30권12호
    • /
    • pp.1287-1293
    • /
    • 2008
  • 기존의 연구에서 널리 사용된 흡수제 2-amino-2-methyl-1-propanol (AMP)의 성능 개선을 위해 carbon dioxide (CO$_2$) 및 nitrogen dioxide (NO$_2$)의 흡수율이 우수한 ammonia (NH$_3$)를 첨가하여 평면교반조에서 CO$_2$, NO$_2$ 및 CO$_2$/NO$_2$의 흡수속도실험을 수행함으로써 반응속도상수를 AMP 단일흡수제와 비교하였다. 30 wt.% AMP에 1, 3, 5 wt.%의 NH$_3$ 첨가에 따라 흡수속도는 대표적으로 303 K, 1 kPa NO$_2$ 분압에서 12.6$\sim$32.6% 증가되므로 NH$_3$의 첨가로 반응속도를 향상시켜 공정 효율의 증가를 기대할 수 있을 것으로 예상된다. 또한 30 wt.% AMP에 3 wt.% NH$_3$ 첨가 수용액의 NO$_2$ 분압 1 kPa과 CO$_2$ 분압 15 kPa에서 CO$_2$/NO$_2$ 동시 흡수속도는 5.50$\sim$6.40$\times$10$^{-6}$ kmol m$^{-2}$ s$^{-1}$로 NH$_3$의 CO$_2$ 및 NO$_2$에 대한 높은 부하능 및 추가 반응에 기인하여 AMP 단일수용액에 비해 48.2$\sim$41.6% 증가하였다. 또한, 화력발전소에서 배출되는 연소배가스 조성과 같이 CO$_2$ 15 kPa 및 NO$_2$의 비교적 낮은 분압(1 kPa) 조건에서 NO$_2$는 AMP에 NH$_3$ 첨가에 따라 약 2배의 빠른 반응으로 CO$_2$의 흡수에 큰 영향 없이 NO$_2$를 동시에 흡수할 수 있을 것으로 기대된다.

피트(peat) 혼합담체를 이용한 저농도 질소산화물(NOx) 제거특성 (Removal Characteristics of Nitrogen Oxides (NOx) in Low Concentration using Peat-Mixed Media)

  • 강영현;김덕우;강선홍;권필주;김달우;황필기;심상보
    • 한국대기환경학회지
    • /
    • 제26권3호
    • /
    • pp.330-338
    • /
    • 2010
  • In this study, removal characteristics of nitrogen oxides $(NO_x)$ from road transport by using peat as the packing media for biodegradation have been investigated in the long term. Physicochemical and biological treatment of peatmixed media eliminates any requirement to use chemical substances and also facilitates the biodegradable actions of microorganism. Safe biodegradation of pollutants, no need to apply additional microbes owing to their active growth, and no generation of secondary pollutants were found in this experiment. It was concluded that average removal efficiencies of nitric oxide (NO) and nitrogen dioxide $(NO_2)$ were 80% and 97% respectively with respect to the linear velocity 35~40 mm/s and 0.3 ppm ozone concentration in the long period operation. Inflow concentration of nitric oxide over 0.05 ppm was suitable when pretreated with ozone. Non-ozone stage was performed with linear velocity 20~100 mm/s and then the average removal efficiency of nitric oxide and nitrogen dioxide were 38% and 94% respectively. Other results showed that the apparent static pressure was raised with increases in applied water content and aerial velocity in mixed media during fan operation.

Efficiency Evaluation of Adsorbents for the Removal of VOC and NO2 in an Underground Subway Station

  • Son, Youn-Suk;Kang, Young-Hoon;Chung, Sang-Gwi;Park, Hyun-Ju;Kim, Jo-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권2호
    • /
    • pp.113-120
    • /
    • 2011
  • Adsorbent combination studies have been carried out to remove nitrogen dioxide ($NO_2$) and volatile organic compounds (VOCs: BTEX) out of a subway environment characterized by high flow and low concentration. Optimal conditions for the high removal efficiency of the concerned target compounds were obtained through testing a series of control factors such as adsorbent sorts, thicknesses, and superficial velocity. It was found that the efficiencies increased as the specific surface area of activated carbon and its thickness increased, and external void fraction decreased. Furthermore, mixed activated carbon with granular and constructed contents was extensively tested to reduce pressure drop through the carbon bed. It was found that the performance of higher contents of granular activated carbon was better than that of higher contents of the constructed carbon. When the mixed carbon was applied to the subway ventilation system in order to eliminate $NO_2$ and VOC simultaneously, the removal efficiencies were found to be 75% and 85%, respectively.

김해지방의 대기오염 특성 (Characteristics of Air Pollution at Kimhae)

  • 박종길;김종필;김지형
    • 한국환경과학회지
    • /
    • 제8권1호
    • /
    • pp.33-43
    • /
    • 1999
  • This paper aims to describe the characteristics of air pollution using air pollutants concentration and meteorological data observed at Kimhae from December 1996 to November, 1997. The results are as follows : The concentration distribution of sulfur dioxide($SO_2$), carbon monoxide(CO), particulate matter(PM-10), and nitrogen dioxide($NO_2$) is high during the late fall and winter and low during the summer, but ozone concentration is low during the winter season and high during summer season except Jangma period and these distributions appear to be closely connected with insolation and the number of clear day. Diurnal variation of concentrations for sulfur dioxide, particulate matter, and carbon monoxide are high during the rush hours and nighttime and low during the daytime and these variations are distinct toward the winter season. And diurnal variation of nitrogen dioxide concentration has also same pattern and these patterns are closely related to the increasing traffic volume at rush hours. Diurnal variation of ozone concentration is generally increase for daytime and decrease for the late afternoon and are closely related to the insolation and photochemical reaction. The 24 hour average concentrations of air pollutant observed at Kimhae represented a positive correlation and a negative correlation for $O_3$ and also a negative correlation for the meteorological elements such as wind speed and cloud cover.

  • PDF