Effect of Added NH$_3$ to AMP on Absorption Rate for Simultaneous Removal of CO$_2$/NO$_2$ in Composite Absorption Process

복합흡수공정에서 CO$_2$/NO$_2$ 동시제거 시 AMP(2-amino-2-methyl-1-propanol)에 Ammonia 첨가가 흡수속도에 미치는 영향

  • Seo, Jong-Beom (Department of Environmental Engineering, Pusan National University) ;
  • Choi, Won-Joon (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Moon, Seung-Jae (Department of Reduction of Greenhouse Gas, Response to Climate Change) ;
  • Lee, Gou-Hong (Environmental Science Technology, Ulsan Metropolitan City Hall) ;
  • Oh, Kwang-Joong (Department of Environmental Engineering, Pusan National University)
  • 서종범 (부산대학교 환경공학과) ;
  • 최원준 (한국에너지기술연구원 온실가스연구센터) ;
  • 문승재 ((주)RCC 온실가스저감부) ;
  • 이규홍 (울산광역시청 환경관리과) ;
  • 오광중 (부산대학교 환경공학과)
  • Published : 2008.12.31

Abstract

In this study, a blend of 2-amino-2-methyl-1-propanol (AMP) and ammonia (NH$_3$) was used to achieve high absorption rates for carbon dioxide (CO$_2$) as suggested at several literatures. The absorption rates of aqueous AMP and blended AMP+NH$_3$ solutions with CO$_2$ and nitrogen dioxide (NO$_2$) were measured using a stirred-cell reactor at 303 K. The effect of the added NH$_3$ to enhance absorption characteristics of AMP was studied. The performances were evaluated under various operating conditions. The absorption rates increased following the increase of the concentration of NH$_3$. The absorption rate of NH$_3$ blended into 30 wt.% AMP solution with NO$_2$ at 303 K was 12.6$\sim$32.6% higher than that of aqueous AMP solution without NH3. Also, the addition of 3 wt.% NH$_3$ to 30 wt.% AMP increased 48.2$\sim$41.6% values for the reactions with CO$_2$ and NO$_2$ at 303 K. Therefore, it clearly shows that the reaction rate of AMP with CO$_2$ and NO$_2$ can be increased by the addition of NH$_3$.

기존의 연구에서 널리 사용된 흡수제 2-amino-2-methyl-1-propanol (AMP)의 성능 개선을 위해 carbon dioxide (CO$_2$) 및 nitrogen dioxide (NO$_2$)의 흡수율이 우수한 ammonia (NH$_3$)를 첨가하여 평면교반조에서 CO$_2$, NO$_2$ 및 CO$_2$/NO$_2$의 흡수속도실험을 수행함으로써 반응속도상수를 AMP 단일흡수제와 비교하였다. 30 wt.% AMP에 1, 3, 5 wt.%의 NH$_3$ 첨가에 따라 흡수속도는 대표적으로 303 K, 1 kPa NO$_2$ 분압에서 12.6$\sim$32.6% 증가되므로 NH$_3$의 첨가로 반응속도를 향상시켜 공정 효율의 증가를 기대할 수 있을 것으로 예상된다. 또한 30 wt.% AMP에 3 wt.% NH$_3$ 첨가 수용액의 NO$_2$ 분압 1 kPa과 CO$_2$ 분압 15 kPa에서 CO$_2$/NO$_2$ 동시 흡수속도는 5.50$\sim$6.40$\times$10$^{-6}$ kmol m$^{-2}$ s$^{-1}$로 NH$_3$의 CO$_2$ 및 NO$_2$에 대한 높은 부하능 및 추가 반응에 기인하여 AMP 단일수용액에 비해 48.2$\sim$41.6% 증가하였다. 또한, 화력발전소에서 배출되는 연소배가스 조성과 같이 CO$_2$ 15 kPa 및 NO$_2$의 비교적 낮은 분압(1 kPa) 조건에서 NO$_2$는 AMP에 NH$_3$ 첨가에 따라 약 2배의 빠른 반응으로 CO$_2$의 흡수에 큰 영향 없이 NO$_2$를 동시에 흡수할 수 있을 것으로 기대된다.

Keywords

References

  1. Mandal, B. P., Guha, M., Biswas, A. K. and Bandyopadhyay, S. S., "Removal of carbon dioxide by absorption in mixed amines: modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions," Chem. Eng. Sci., 56, 6217-6224(2001) https://doi.org/10.1016/S0009-2509(01)00279-2
  2. 오광중, 최원준, 이재정, 유정석, 조상원, 손병현, "AMP (2-amino-2-methyl-1-propanol)에 MDEA(N-methyldiethanolamine) 을 첨가한 흡수제의 $CO_2$$H_2S$의 흡수특성," 대한환경공학회지, 23(8), 1337-1347(2001)
  3. 최원준, 이재정, 정종현, 유정석, 문길호, 오광중, "첨가제에 따른 혼합흡수제를 이용한 $CO_2/H_2S$의 흡수 및 재생," 대한환경공학회지, 26(5), 536-542(2004)
  4. Choi, W. J., Seo, J. B., Kim, J. W., Moon, S. J., Park, S. W., and Oh, K. J., "Removal of carbon dioxide and sulfur dioxide by absorption into aqueous AMP/AMMONIA solutions," 1st ASCON-IEEChE, 751-754(2008)
  5. Oh, K. J., Kim, D. U., Shon, B. H., and Lee, J. J., "A study on the solubility of carbon dioxide in aqueous solution of 2-amino-2-methyl-1-propanol (AMP) and piperazine," 221st ACS National Meeting, Fuel Chem. Div. Prep., 46, 65-66(2001)
  6. Choi, W. J., Cho, K. C., Lee, S. S., Shim, J. G., Hwang, H. R., Park, S. W., and Oh, K. J., "Removal of carbon dioxide by absorption into blended amines: kinetics of absorption into aqueous AMP/HMDA, AMP/MDEA, and AMP/piperazine solutions," Green Chemistry, 9, 594-598(2007) https://doi.org/10.1039/b614101c
  7. Xu, S., Otto, F. D., and Mather, A. E., "Physical properties of aqueous AMP solutions," J. Chem. Eng. Data, 36, 71-75(1991) https://doi.org/10.1021/je00001a021
  8. Xu, S., Wang, Y. W., Otto, F. D., and Mather, A. E., "Representation of equilibrium solubility properties of $CO_2$ with aqueous solutions of 2-amino-2-methyl-1-propanol," Chem. Eng. Proc., 31, 7-12(1992) https://doi.org/10.1016/0255-2701(92)80002-K
  9. Brooks, L. A. and Audrieth, L. F., "Ammonia carbamate," Inorg. Synth., 2, 85(1946) https://doi.org/10.1002/9780470132333.ch23
  10. Hatch, T. F. and Pigford, R. L., "Simultaneous absorption of carbon dioxide and ammonia in water," Ing. Eng. Chem. Funda., 1(3), 209(1962) https://doi.org/10.1021/i160003a009
  11. IPelk, J. E., Concannon, P. J., Manley, D. B., and Poling, B. E., "Product distributions in the $CO_2-NH_3-H_2O$ system from liquid conductivity measurements," Ind. Eng. Chem. Res., 31, 2209-2215(1992) https://doi.org/10.1021/ie00009a018
  12. Kucheryavyi, V. I. and Gorlovskij, D. M., "Densities of coexisting phases in the equilibrium gas-liquid system $NH_3-CO_2-CO-(NH_2)_2-H_2O$ at high temperatures and pressures," Zh. Prikl. Khim., 43, 1675-681(1970)
  13. Denbigh, K. G. and Prince, A. J., "Kinetics of nitrous gas absorption in aqueous nitric acid," J. Am. Chem. Soc., 69, 790-801(1947) https://doi.org/10.1021/ja01196a013
  14. Gray, P. and Yoffe, A. D., "The reactivity and structure of nitrogen dioxide," Chem. Rev., 55, 1069-1154(1955) https://doi.org/10.1021/cr50006a001