• 제목/요약/키워드: Night vehicle detection

검색결과 42건 처리시간 0.025초

조명에 강인한 눈꺼풀 움직임 측정기반 운전자 감시 시스템 (An Illumination-Robust Driver Monitoring System Based on Eyelid Movement Measurement)

  • 박일권;김광수;박상철;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권3호
    • /
    • pp.255-265
    • /
    • 2007
  • 본 논문은 지능형 자동차 개발을 위한 주간 및 야간 환경에서 차량 운전 시 발생할 수 있는 다양한 조명을 극복하고 운전자 졸음 상태를 단일 CCD(Charge Coupled Device) 카메라를 통해 감시하는 시스템을 제안한다. 운전 중 운전자 눈을 감시하여 졸음 상태를 판단하는 시스템에서 눈 검출 및 눈꺼풀 움직임 측정은 선행되어야 할 중요한 과정이다. 따라서 비전기반 시스템의 가장 큰 단점인 조명변화를 극복하며 눈 검출 성능을 높이고 실시간 처리가 가능한 간단한 조명 보정 알고리즘을 제안하였으며 또한 신뢰성 있는 졸음 판단을 위해 효율적인 눈꺼풀 움직임 측정 방법을 제안한다. 이러한 시스템은 실시간으로 처리되어야 하며 이를 위해 제안한 방법과 더불어 효율적인 눈 검증 방법으로 단계적 SVM(Cascaded Support Vector Machine)을 적용하였다. 한편, 제안한 알고리즘의 성능 측정을 위해 주간 및 야간의 다 양한 조명 변화 속에서 주행 중 수집된 운전자 동영상을 사용하였으며 자체 수집된 동영상에 대해 98% 이상의 눈 검출 성능 및 신뢰성 있는 눈꺼풀 움직임을 측정하였다. 최종 졸음판단 결과는 수집된 각각의 동 영상에 대한 PERCLOS(The percentage of eye-closed time during a period)를 비교함으로써 제안한 시스템의 성능 및 우수성을 보였다.

후방 램프 밝기 정보를 이용한 야간 차량 검출 (Night Time Vehicle Detection using Rear-Lamp Intensity)

  • 정경민;송병철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.191-193
    • /
    • 2016
  • 후방 램프를 이용하는 기존의 차량 검출 기법들은 주로 색상 정보를 활용한다. 그러나 조도가 낮은 야간 환경의 특성상 색상 정보를 온전히 활용할 수 없는 경우가 빈번하게 발생한다. 이를 해결하기 위해 본 논문에서는 야간 환경에서 후방 램프의 밝기 값만을 이용해 차량을 검출한다. 일반적으로 후방 램프를 검출하기 위해 색상 정보와 밝기 값을 이용해 이진화를 하게 되는데, 본 논문에서는 밝기 값을 이용해 톤 매핑 과정을 수행하여 후방 램프의 모양을 보존한다. 밝기 값 만을 이용하기 때문에 오검출이 증가하게 되는데 이는 후방 램프에 대한 조건을 알고리즘에 적용함으로써 해결한다. 이에 더해 추적 알고리즘을 적용하여 남아있는 오검출을 제거한다. 이러한 과정은 모두 실시간으로 이루어지기 때문에 최근 활발히 연구되고 있는 자동 주행 시스템이나 주행 보조 시스템 등에 활용 될 수 있다.

  • PDF

무인차량 적용을 위한 차선강조기법 기반의 차선 인식 (Lane Recognition Using Lane Prominence Algorithm for Unmanned Vehicles)

  • 백준영;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.625-631
    • /
    • 2010
  • This paper proposes lane recognition algorithm using lane prominence technique to extract lane candidate. The lane prominence technique is combined with embossing effect, lane thickness check, and lane extraction using mask. The proposed lane recognition algorithm consists of preprocessing, lane candidate extraction and lane recognition. First, preprocessing is executed, which includes gray image acquisition, inverse perspective transform and gaussian blur. Second, lane candidate is extracted by using lane prominence technique. Finally, lane is recognized by using hough transform and least square method. To evaluate the proposed lane recognition algorithm, this algorithm was applied to the detection of lanes in the rainy and night day. The experiment results showed that the proposed algorithm can recognize lane in various environment. It means that the algorithm can be applied to lane recognition to drive unmanned vehicles.

비전기반 지능형 자동차를 위한 도로 주행 영상 개선 방법 (Road Image Enhancement Method for Vision-based Intelligent Vehicle)

  • 김승규;박대용;최영우
    • 인지과학
    • /
    • 제25권1호
    • /
    • pp.51-71
    • /
    • 2014
  • 본 논문에서는 도로 주행에서 취득한 영상을 개선하는 방법을 제안한다. 일반적인 도로주행 영상은 다양한 조명 환경과 날씨 상태로 인하여 선명하지 못한 영상이 취득되기도 한다. 특히 역광이나 야간에는 품질이 좋은 선명한 영상을 얻기가 더욱 어려우며, 이는 비전기반 지능형 자동차 기술의 응용에 많은 어려움을 준다. 인간의 시각 인지방법은 여러 가지조명 조건을 고려하여 색을 지각한다. 하지만 기존의 영상 개선 방법들은 광원의 위치와 광도, 기하학적 관계를 고려하지 않기 때문에 완벽한 결과를 얻기가 어려우며, 오히려 영상의 질이 떨어지는 경우도 발생한다. 본 논문에서는 이러한 문제점을 해결하기 위해서 1) 주어진 입력 영상의 전처리 과정을 수행한 후, 2) 선명도를 추정하여 색채의 대비를 평가하고, 3) 과대 및 과소평가 결과를 전처리된 영상과 혼합하여 사람이 지각하는 색상과 같이 개선된 영상을 얻는 효과적인 방법을 제안한다. 본 논문에서 제안하는 방법은 시각적으로 개선된 결과를 보여줄 뿐만 아니라 비전기반 지능형 자동차 기술의 한 응용분야인 교통표지판 검출의 전처리 과정으로 적용되어 성능이 향상됨을 확인할 수 있었다.

형태특징과 지역특징 융합기법을 활용한 열영상 기반의 차량 분류 방법 (A Vehicle Classification Method in Thermal Video Sequences using both Shape and Local Features)

  • 양동원
    • 전기전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.97-105
    • /
    • 2020
  • 열 영상은 온도에 따라 방출하는 에너지의 차이를 나타낸 영상이다. 주야간 사용이 가능하기 때문에 군사적인 용도로 많이 활용되고 있으나, 열 영상은 물체의 경계가 불명확하고 흐릿하게 표현되는 경우가 많으며 화염 등의 열기로 인해 경계부분이 변질되는 단점이 있다. 따라서, 열 영상을 이용하여 표적의 종류를 분류할 때 정확하게 분할된 경계선을 이용할 경우 효과적으로 분류 할 수 있지만, 물체의 경계가 잘못 추출되는 경우 분류의 정확도가 크게 감소한다. 본 논문에서는 이러한 단점을 극복하기 위해서 표적 영상의 분할 신뢰도에 따라 형태특징과 지역특징의 분류결과를 융합하는 계층적 분류기법을 제안하였으며, 연속 영상 기반으로 분류 결과를 갱신하는 기법을 새롭게 제안하여 차량 표적 분류 정확도를 개선하였다. 제안하는 방법은 실제 군용 표적 4종(전차, 장갑차, 상용차, 군용트럭)이 있는 다양한 자세의 열 영상 20,000장 이상을 이용하여 성능을 검증하였으며, 우수한 성능의 기존 방법 대비 정확도 개선에 효과가 있음을 확인하였다.

고속도로 교통사고 시 돌발상황 지속시간 영향 요인 분석 (A Study on the Influencing Factors for Incident Duration Time by Expressway Accident)

  • 이기영;서임기;박민수;장명순
    • 한국도로학회논문집
    • /
    • 제14권1호
    • /
    • pp.85-94
    • /
    • 2012
  • 교통사고 발생시점부터 사고처리가 완료된 시점까지를 돌발상황 지속시간(Incident Duration Time)이라고 정의하는데, 이를 단축시켜야만 교통사고 피해를 최소화할 수 있다. 본 연구는 고속도로 교통사고를 대상으로 돌발상황 지속시간에 영향을 주는 요인들을 찾아내기 위한 모형을 개발하였다. 모형은 모든 사고자료에 포함한 통합 모형(모형1)과 일반구간, 교량, 터널 등 교통사고 장소별로 구분하여 분석한 세부 모형(모형 2, 3, 4) 등 모두 4개의 모형을 구축하였다. 분석 결과, 교통사고가 발생한 장소에 따라 돌발상황 지속시간에 다른 영향을 주는 것으로 나타났으며, 현장 처리를 위한 작업차량 도착시간이 가장 민감한 요인으로 분석되었다. 또한 차-차 사고, 화물차에 의한 사고, 야간 사고, 주말 사고 등의 시사점 있는 요인들을 찾아냈다. 이러한 연구결과는 향후 교통사고 관리대책을 수립하는 데 있어 중요한 판단지표로 활용이 가능할 것으로 판단된다.

YOLOv8 알고리즘 기반의 주행 가능한 도로 영역 인식과 실시간 추적 기법에 관한 연구 (Research on Drivable Road Area Recognition and Real-Time Tracking Techniques Based on YOLOv8 Algorithm)

  • 서정희
    • 한국전자통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.563-570
    • /
    • 2024
  • 본 논문은 운전자의 운행 보조 역할로 주행 가능한 차선 영역을 인식하고 추적하는 방법을 제안한다. 주요 주제는 차량 내부의 앞 유리 중앙에 설치된 카메라를 통해 실시간으로 획득한 영상을 기반으로 컴퓨터 비전과 딥 러닝 기술을 활용하여 주행 가능한 도로 영역을 예측하는 심층 기반 네트워크를 설계한다. 본 연구는 YOLOv8 알고리즘을 이용하여 카메라에서 직접 획득한 데이터로 훈련한 새로운 모델을 개발하는 것을 목표한다. 실제 도로에서 자신의 차량의 정확한 위치를 실제 영상과 일치하게 시각화하여 주행 가능한 차선 영역을 표시 및 추적함으로써 운전자 운행의 보조하는 역할을 기대한다. 실험 결과, 대부분 주행 가능한 도로 영역의 추적이 가능했으나 밤에 비가 심하게 오는 경우와 같은 악천후에서 차선이 정확하게 인식되지 않는 경우가 발생하여 이를 해결하기 위한 모델의 성능 개선이 필요하다.

단일 비디오 카메라와 초음파센서를 이용한 스마트 에어백용 승객 감지 시스템 (An Occupant Sensing System Using Single Video Camera and Ultrasonic Sensor for Advanced Airbag)

  • 배태욱;이종원;하수영;김영춘;안상호;송규익
    • 한국멀티미디어학회논문지
    • /
    • 제13권1호
    • /
    • pp.66-75
    • /
    • 2010
  • 본 논문에서는 단일 비디오카메라와 초음파센서를 이용한 스마트 에어백용 승객 감지 시스템을 제안하였다. 승객의 체형과 얼굴 위치를 검출하기 위하여, 실시간 검출이 용이한 얼굴색 및 움직임 정보를 이용한다. 비디오 카메라 영상에서 얼굴색에 해당하는 색차신호 (U/V)의 경계값과 휘도신호 (Y)의 현재 프레임과 이전 프레임간의 차이값을 이용하여 후보 얼굴 블록 영상을 만든 후 모폴로지 및 라벨링 과정을 거쳐 얼굴 위치를 검출한다. 제안한 승객 자세감지 시스템의 성능을 평가하기 위하여 차량 지그에 IEEE 카메라, 초음파 센서 및 적외선 LED를 설치하여 다양한 실험을 수행하였다.

야간 PDS를 위한 광학 흐름과 기울기 방향 히스토그램 이용 방법 (Using Optical Flow and HoG for Nighttime PDS)

  • 조휘택;유현중;김형석;황젱넹
    • 한국산학기술학회논문지
    • /
    • 제10권7호
    • /
    • pp.1556-1567
    • /
    • 2009
  • 자동차 주요 생산국인 우리나라 보행자의 교통사고 사망률은 인구 10만 명 당 5.28명으로서 OECD 평균의 약 2.5배에 달한다. 보행자를 감지하고 운전자에게 경보를 보내주는 시스템이 개발되어 보행자 교통사고를 조금이라도 줄일 수 있다면, 그 자체만으로도 보행자 감지 시스템의 가치는 충분하기 때문에 PDS에 대한 관심이 높아지고 있다. 보행자 교통사고율은 야간에 더 높기 때문에, 야간 보행자 감지 시스템에 주요 자동차 회사들이 관심을 두고 있으나, 그들은 일반적으로 고가의 나이트비젼 또는 복합적 센서를 사용하는 장비를 채택하고 있다. 본 논문에서는 PDS에서 나이트비젼 대신에, 넓은 동적 범위를 갖는 가시 스펙트럼 대역 흑백 카메라 한 대만을 사용하는 야간 보행자 감지 기법을 제안한다. 서로 다른 환경에서 촬영된 야간 동영상들에 대해 실험한 결과, 제안 알고리듬이 에지가 어느 정도 정확하게 검출되는 상황이라면 정확한 보행자 검출 성능을 보였다.

복합임무 무인수상정의 개발시험평가 및 검증절차에 관한 고찰 (A Study of the Development Test and Evaluation and Verification Procedure of a Multi-Mission USV, M-Searcher)

  • 박신배;김원제;이건철
    • 한국해양공학회지
    • /
    • 제32권5호
    • /
    • pp.402-409
    • /
    • 2018
  • This paper describes the plan and procedure of a development test and evaluation that will be performed to verify the performance and technology of multi-mission unmanned surface vehicles (MMUSVs). In order to verify the design requirement of MMUSVs, we designed and manufactured the common platform of MMUSVs, which have an overall length of8.4 m, a displacement of 3,100 kg, and a speed of more than35 kts. The platform is equipped with several sub-systems, including radar and an EOTS/IRS. The EOTS/IRS, along with the search radar, is used for effective detection, identification, and targeting. The core technologies of MMUSV for DT&E will be investigated. The common platform design technologies, remote operating and control system technologies, autonomous navigation technologies, and unmanned operational technology of sensors and equipment will be studied for the development of the MMUSV's core technologies. The system will be able to make precise observations and track targets both manually and automatically during day and night conditions. Currently, the verification tests for each of the technologies and for the integrated system are in the pipeline for DT&E, which will be performed next year. Also, software reliability and life tests will be performed.