• Title/Summary/Keyword: Nielsen fixed point theory

Search Result 11, Processing Time 0.025 seconds

A relative nielsen number in coincidence theory

  • Jang, Chan-Gyu;Lee, Sik
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.171-181
    • /
    • 1995
  • Nielsen coincidence theory is concerned with the estimation of a lower bound for the number of coincidences of two maps $f,g: X \longrightarrow Y$. For this purpose the so-called Nielsen number N(f,g) is introduced, which is a lower bound for the number of coincidences ([1]). The relative Nielsen number N(f : X,A) in the fixed point theory is introduced in [3], which is a lower bound for the number of fixed points for all maps in the relative homotopy class of f:(X,A) $\longrightarrow$ (X,A), and its estimation is given in [5].

  • PDF

A NOTE ON NIELSEN TYPE NUMBERS

  • Lee, Seoung-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.263-271
    • /
    • 2010
  • The Reidemeister orbit set plays a crucial role in the Nielsen type theory of periodic orbits, such as the Reidemeister set does in Nielsen fixed point theory. In this paper, using Heath and You's methods on Nielsen type numbers, we show that these numbers can be evaluated by the set of essential orbit classes under suitable hypotheses, and obtain some formulas in some special cases.

IRREDUCIBLE REIDEMEISTER ORBIT SETS

  • Lee, Seoung Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.721-734
    • /
    • 2014
  • The Reidemeister orbit set plays a crucial role in the Nielsen type theory of periodic orbits, much as the Reidemeister set does in Nielsen fixed point theory. Extending our work on Reidemeister orbit sets, we obtain algebraic results such as addition formulae for irreducible Reidemeister orbit sets. Similar formulae for Nielsen type irreducible essential orbit numbers are also proved for fibre preserving maps.

A RELATIVE REIDEMEISTER ORBIT NUMBER

  • Lee, Seoung-Ho;Yoon, Yeon-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.193-209
    • /
    • 2006
  • The Reidemeister orbit set plays a crucial role in the Nielsen type theory of periodic orbits, much as the Reidemeister set does in Nielsen fixed point theory. In this paper, extending Cardona and Wong's work on relative Reidemeister numbers, we show that the Reidemeister orbit numbers can be used to calculate the relative essential orbit numbers. We also apply the relative Reidemeister orbit number to study periodic orbits of fibre preserving maps.

REIDEMEISTER ORBIT SETS ON THE MAPPING TORUS

  • Lee, Seoung-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.745-757
    • /
    • 2004
  • The Reidemeister orbit set plays a crucial role in the Nielsen type theory of periodic orbits, much as the Reidemeister set does in Nielsen fixed point theory. Let f : G $\longrightarrow$ G be an endomorphism between the fundamental group of the mapping torus. Extending Jiang and Ferrario's works on Reidemeister sets, we obtain algebraic results such as addition formulae for Reidemeister orbit sets of f relative to Reidemeister sets on suspension groups. In particular, if f is an automorphism, an similar formula for Reidemeister orbit sets of f relative to Reidemeister sets on given groups is also proved.

REIDEMEISTER ZETA FUNCTION FOR GROUP EXTENSIONS

  • Wong, Peter
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1107-1116
    • /
    • 2001
  • In this paper, we study the rationality of the Reidemeister zeta function of an endomorphism of a group extension. As an application, we give sufficient conditions for the rationality of the Reidemeister and the Nielsen zeta functions of selfmaps on an exponential solvmanifold or an infra-nilmanifold or the coset space of a compact connected Lie group by a finite subgroup.

  • PDF