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IRREDUCIBLE REIDEMEISTER ORBIT SETS

Seoung Ho Lee*

Abstract. The Reidemeister orbit set plays a crucial role in the
Nielsen type theory of periodic orbits, much as the Reidemeister
set does in Nielsen fixed point theory. Extending our work on Rei-
demeister orbit sets, we obtain algebraic results such as addition
formulae for irreducible Reidemeister orbit sets. Similar formulae
for Nielsen type irreducible essential orbit numbers are also proved
for fibre preserving maps.

1. Introduction

Nielsen fixed point theory has been extended to a Nielsen type theory
of periodic orbits [6, Section III.3]. In fixed point theory, the compu-
tation of the Nielsen number often relies on our knowledge of the Rei-
demeister set, that is the set of Reidemeister conjugacy classes in the
fundamental group. Extending Ferrario’s work [2] on Reidemeister sets,
we in [7] made an algebraic study of the Reidemeister orbit set in rela-
tion to an invariant normal subgroup. We obtained addition formulae
for Reidemeister orbit numbers, and applied them to the Nielsen type
essential orbit number of fiber preserving maps. Our aim in this paper
is similar to study the irreducible Reidemeister orbit set, to obtain some
addition formulae for irreducible Reidemeister orbit numbers, and as ap-
plication, to find addition formulae for Nielsen type irreducible essential
orbit numbers of fiber preserving maps.

Given a group endomorphism f : G→ G, the Reidemeister set R(f)

of f is the set of orbits of the left action of G on G via γ
g7→ gγf(g−1).

For a given integer n > 0, f acts on the Reidemeister set R(fn) of the
n-th iterate fn. An orbit of this action is called a Reidemeister orbit, the
set of all such orbits is the Reidemeister orbit set RO(n)(f). We define a
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subset IRO(n)(f) of it to be the set of irreducuble Reidemeister orbits.
If H ⊂ G is an f -invariant normal subgroup and Ḡ = G/H, then the

short exact sequence 1→ H
i→ G→ Ḡ→ 1 induces an exact sequence

RO(n)(fH)
i∗→ RO(n)(f)→ RO(n)(f̄)→ 1

of Reidemeister orbit sets. Note that i∗ does not preserve irreducibility.
Under certain conditions, we can have an addition formula of the form

]IRO(n)(f) =
∑

j∈RO(n)(f̄)

]IRO(mj)(θ′j),

where mj = n/`j , `j being the length of the orbit j, and θ′j : H → H

is a twisted version of f
`j
H . In Example 2.10 we give a correction of [7,

Example 1.16].
Turning to the topological context, we consider a fibre preserving

map f : E → E of a Hurewicz fibration p : E → B of compact ANR’s.
It induces a map f̄ : B → B. Let K be the kernel of the homomorphism
j∗ : π1(Fb) → π1(E) induced by the inclusion of a fiber. Denote by

IEO(n)(f) the number of irreducible essential orbit classes of f , and by

IEO
(m)
K the number of mod K irreducible essential orbit classes on a

fibre. The following formula is a correction of [7, Corollary 2.5]. Under
suitable conditions, we have an addition formula of the form

IEO(n)(f) =
∑
b∈ξ

IEO
(m)
K (hb),

where the summation runs over a set ξ of essential orbit representatives
for f̄ , ` is the length of the essential f̄ -orbit class containing b, m = n/`,
and hb : Fb → Fb is a variant of f `|Fb.

The paper consists of two sections. In the first section we show our
results on the irreducible Reidemeister orbit sets using the method of
our algebraic results in [7] on the Reidemeister orbit sets. In the second
section we apply them to fibre preserving maps.

For the basics of Nielsen fixed point theory, the reader is referred to
[1,6].

2. Irreducible Reidemeister n-orbit sets

Let f : G → G be a group endomorphism. The Reidemeister set
R(f) of f is the set of equivalence classes for the following Reidemeister
equivalence relation in G: γ, γ′ ∈ G are equivalent if and only if γ′ =
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gγf(g−1) for some g ∈ G. The Reidemeister class of γ ∈ G is denoted
by [γ]f .

If H ⊂ G is an f -invariant normal subgroup, then the short exact
sequence

1→ H
i→ G

q→ Ḡ→ 1,

where Ḡ = G/H, and i : H → G and q : G → Ḡ are the inclusion and
quotient homomorphisms, induces an exact sequence (in the category of
pointed sets)

(R(fH), [1]fH )
i∗→ (R(f), [1]f )

q∗→ (R(f̄), [1]f̄ )→ 1

of Reidemeister sets, where R(fH) is the Reidemeister set of the restric-
tion map fH : H → H, and R(f̄) is the Reidemeister set of the induced
map f̄ : Ḡ→ Ḡ.

Let n > 0 be a given integer. Then f acts on the Reidemeister

set R(fn) by [γ]fn
f7→ [f(γ)]fn . The f -orbit of a Reidemeister class

[γ]fn is called a Reidemeister n-orbit, denoted by [γ]
(n)
f . The set of

all such Reidemeister f -orbits is called the Reidemeister n-orbit set of

f , denoted by RO(n)(f). The length of the orbit [γ]
(n)
f is the smallest

integer ` = `([γ]
(n)
f ) > 0 such that [γ]fn = [f `(γ)]fn . Furthermore, there

is an exact sequence (in the category of pointed sets)

(RO(n)(fH), [1]
(n)
fH

)
i∗→ (RO(n)(f), [1]

(n)
f )

q∗→ (RO(n)(f̄), [1]
(n)

f̄
)→ 1

of Reidemeister orbit sets, where RO(n)(fH) is the Reidemeister orbit

set of the restriction map fH : H → H, and RO(n)(f̄) is the Reide-
meister orbit set of the induced map f̄ : Ḡ → Ḡ. For ` | n, we have a
commutative diagram

R(f `)
`,n−−−−→ R(fn)y y

RO(`)(f)
`,n−−−−→ RO(n)(f),

where the vertical maps are projections, and the horizontal maps are
induced by the level-change function ι`,n : G→ G defined (as in [5, 1.9])
by

ι`,n(β) := βf `(β)f2`(β) · · · fn−`(β).

We say that an f -orbit [α]
(n)
f ∈ RO(n)(f) is reducible to level h, if there

exists a [β]
(h)
f ∈ RO(h)(f) such that ιh,n([β]

(h)
f ) = [α]

(n)
f . The lowest
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level d = d([α]
(n)
f ) to which [α]

(n)
f reduces is its depth. A Reidemeister

orbit [α]
(n)
f ∈ RO(n)(f) is said to have the full depth property if its

depth equals its length, i.e., d = ` (see [7]).
From the above definitions, we have

Lemma 2.1. Let f : G → G and g : G′ → G′ be group endomor-
phisms. Let h : G→ G′ be a homomorphism. If the diagram

G
f−−−−→ G

h

y yh
G′

g−−−−→ G′

commutes, then `([h(α)]
(n)
g ) | `([α]

(n)
f ) and d([h(α)]

(n)
g ) ≤ d([α]

(n)
f ),

where `, d are length and depth of corresponding ones.

Corollary 2.2. If [h(α)]
(n)
g is irreducible, then [α]

(n)
f is irreducible.

Corollary 2.3. If [h(α)]
(n)
g has the full depth property, then

d([h(α)](n)
g ) | d([α]

(n)
f ).

Definition 2.4. Let f : G → G be a group endomorphism. The
f -orbit of an irreducible Reidemeister class will be called an irreducible
Reidemeister n-orbit. The set of all such irreducible Reidemeister f -
orbits will be called the irreducible Reidemeister n-orbit set of f , denoted
by IRO(n)(f).

Note that if n = m`, then the orbit [α]
(m)

f`
= {[α]fn , [f

`(α)]fn , . . .} is

a subset of the orbit [α]
(n)
f = {[α]fn , [f(α)]fn , . . .}. Thus this inclusion

induces a map

σ : (RO(m)(f `), [α]
(m)

f`
)→ (RO(n)(f), [α]

(n)
f ).

Lemma 2.5. Let n > 0 and α ∈ G. Suppose the orbit [ᾱ]
(n)

f̄
∈

RO(n)(f̄) has length `, and let m := n/`. We have a commutative
diagram of exact sequences in the category of pointed sets:

(RO(m)(f `), [α]
(m)

f`
)

q∗−−−−→ (RO(m)(f̄ `), [ᾱ]
(m)

f̄`
) −−−−→ 1

σ

y yσ̄
(RO(n)(f), [α]

(n)
f )

q∗−−−−→ (RO(n)(f̄), [ᾱ]
(n)

f̄
) −−−−→ 1,
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where the vertical maps σ and σ̄ are induced by inclusions, and they are
surjective. σ restricts to a bijection

σ : q−1
∗ ([ᾱ]

(m)

f̄`
)→ q−1

∗ ([ᾱ]
(n)

f̄
).

Furthermore, if [ᾱ]
(n)

f̄
has the full depth property, then σ restricts to a

bijection

σ : IRO(m)(f `) ∩ q−1
∗ ([ᾱ]

(m)

f̄`
)→ IRO(n)(f) ∩ q−1

∗ ([ᾱ]
(n)

f̄
).

Proof. For the first part, see [7, 1.7]. Now we show that if [β]
(m)

f`
∈

IRO(m)(f `)∩q−1
∗ ([ᾱ]

(m)

f̄`
), then σ([β]

(m)

f`
) = [β]

(n)
f is irreducible. Assume

that the depth d = d([β]
(n)
f ) < n. Since [ᾱ]

(n)

f̄
= q∗([β]

(n)
f ) has the full

depth property, the length ` of it is its depth. Thus by Corollary 2.3
` | d. Let d = `r. Then we have r < m and r | m. By definition of
depth, there exists γ ∈ G such that

β = γfd(γ) · · · fn−d(γ) = γ(f `)r(γ) · · · (f `)m−r(γ).

This means that [β]
(m)

f`
is reducible to level r. This is a contradiction.

On the other hand, in the proof of [7,1.7] if [β]
(n)
f ∈ q−1

∗ ([ᾱ]
(n)

f̄
), then

σ−1([β]
(n)
f ) ∩ q−1

∗ ([ᾱ]
(m)

f`
) = {[β]

(m)

f`
}.

It is sufficient to show that if [β]
(n)
f ∈ IRO(n)(f) ∩ q−1

∗ ([ᾱ]
(n)

f̄
), then

[β]
(m)

f`
is irreducible. Assume that the depth d = d([β]

(m)

f`
) < m. Then

there exists γ ∈ G such that

β = γ(f `)d(γ) · · · (f `)m−d(γ) = γf `d(γ) · · · fn−`d(γ).

This means that [β]
(n)
f is reducible to level `d.

Notation. For α ∈ G, let τα : G→ G denote the conjugation defined
by τα(β) = αβα−1.

From [7, 1.10] there is a canonical bijection of the Reidemeister orbit

sets of ταf and f , denoted by α∗ : RO(n)(ταf)→ RO(n)(f), given by

α∗([g]
(n)
ταf

) = [gαf(α) · · · fn−1(α)]
(n)
f .

Lemma 2.6. The canonical bijection α∗ preserves irreducibility.
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Proof. For ` | n, we will show the commutativity of the following
diagram

RO(`)(ταf)
α∗−−−−→ RO(`)(f)

ι`,n

y yι`,n
RO(n)(ταf)

α∗−−−−→ RO(n)(f)
where the vertical maps are level-change functions. Then α∗ preseves
irreducibility. Clearly we have

(ταf)n(g) = (αf(α) · · · fn−1(α))fn(g)(αf(α) · · · fn−1(α))−1

for all g ∈ G. Then

α∗ι`,n([g]
(`)
ταf

) = α∗([g(ταf)`(g) · · · (ταf)n−`(g)]
(n)
ταf

)

= [g(ταf)`(g) · · · (ταf)n−`(g)α · · · fn−1(α)]
(n)
f

= [g(αf(α) · · · f `−1(α))f `(g)(αf(α) · · · f `−1(α))−1 · · ·
(αf(α) · · · fn−`−1(α))fn−`(g)(αf(α) · · · fn−`−1(α))−1

α · · · fn−1(α)]
(n)
f

= [(gαf(α) · · · f `−1(α))f `(gαf(α) · · · f `−1(α)) · · ·

· · · fn−`(gαf(α) · · · f `−1(α))]
(n)
f

= ι`,n([gαf(α) · · · f `−1(α)]
(`)
f

= ι`,nα∗([g]
(`)
ταf

).

This is exactly what we need.

Applying Lemma 2.5 and Lemma 2.6 to [7, Corollary 1.11], we have

Corollary 2.7. Suppose n > 0 and α ∈ G are given. Suppose the

orbit [ᾱ]
(n)

f̄
∈ RO(n)(f̄) has depth d, and let m := n/d and ῑd,n(β̄) = ᾱ

for some β ∈ G. Then we have a commutative diagram in the category
of pointed sets:

(RO(m)(τβf
d), [1]

(m)

τβfd
)

q∗−−−−→ (RO(m)(τβ̄ f̄
d), [1]

(m)

τβ̄ f̄
d)

β∗

y yβ̄∗
(RO(m)(fd), [β

(m)
d ]

(m)

fd
)

q∗−−−−→ (RO(m)(f̄d), [β̄
(m)
d ]

(m)

f̄d
)

σ

y yσ̄
(RO(n)(f), [α]

(n)
f )

q∗−−−−→ (RO(n)(f̄), [ᾱ]
(n)

f̄
),
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where the vertical maps β∗ and β̄∗ are induced by the element β ∈
G. The notation β

(m)
d stands for βfd(β) · · · fn−d(β), and similarly for

β̄
(m)
d . Furthermore, if [ᾱ]

(n)

f̄
has the full depth property, then we have a

bijection

σ ◦ β∗ : IRO(m)(τβf
d) ∩ q−1

∗ ([1]
(m)

τβ̄ f̄
d) −→ IRO(n)(f) ∩ q−1

∗ ([ᾱ]
(n)

f̄
),

where β∗ : RO(m)(τβf
d)→ RO(m)(fd) is a canonical bijection given by

β∗([g]
(m)

τβfd
) = [gβfd(β) · · · fn−d(β)]

(m)

fd
.

Proof. By [7, Corollary 1.11] the diagram commutes and we have a
bijection

σ ◦ β∗ : q−1
∗ ([1]

(m)

τβ̄ f̄
d) −→ q−1

∗ ([ᾱ]
(n)

f̄
).

Since β∗ and σ preserves irreducibility, we have the assersion.

Lemma 2.8. Suppose n > 0 and α ∈ G are given. Suppose the orbit

[ᾱ]
(n)

f̄
∈ RO(n)(f̄) has depth d, and let m := n/d and ῑd,n(β̄) = ᾱ for

some β ∈ G. If Fix(τᾱf̄
n) = {1} and ῑm′,m is injective for every m′ | m,

then the restriction

i∗ : IRO(m)(τβf
d
H) −→ IRO(m)(τβf

d) ∩ q−1
∗ ([1]

(m)

τβ̄ f̄
d)

is a bijection.

Proof. When Fix((τβ̄ f̄
d)m) = Fix(τᾱf̄

n) = {1}, by [7, 1.6] the map

i∗ : RO(m)(τβf
d
H)→ q−1

∗ ([1]
(m)

τβ̄ f̄
d)

is a bijection. First we will show that if [γ]
(m)

τβf
d
H

∈ IRO(m)(τβf
d
H),

then i∗([γ]
(m)

τβf
d
H

) = [γ]
(m)

τβfd
∈ IRO(m)(τβf

d). Assume the depth m′ =

d([γ]
(m)

τβfd
) < m and ιm′,m(δ) = γ for some δ ∈ RO(m′)(τβf

d). Then we

have a commutative diagram of exact sequences of pointed sets:

(RO(m′)(τβf
d), [δ]

(m′)
τβf

d )
q∗→ (RO(m′)(τβ̄ f̄

d), [δ̄]
(m′)
τβ̄ f̄

d )

ιm′,m ↓ ↓ ῑm′,m
(RO(m)(τβf

d
H), [γ]

(m)

τβf
d
H

)
i∗→ (RO(m)(τβf

d), [γ]
(m)

τβf
d )

q∗→ (RO(m)(τβ̄ f̄
d), [1]

(m)

τβ̄ f̄
d )

Since ῑm′,m is injective, we have [δ̄]
(m′)

τβ̄ f̄
d = [1]

(m′)

τβ̄ f̄
d , and so there exists

[δ′]
(m′)

τβf
d
H

∈ RO(m′)(τβf
d
H) such that i∗([δ

′]
(m′)

τβf
d
H

) = [δ]
(m′)
τβfd

. Since i∗ is
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injective in the lower sequence, we have ιm′,m([δ′]
(m′)

τβf
d
H

= [γ]
(m)

τβf
d
H

. This is

a contradiction.
On the other hand, Corollary 2.2 tells us

i−1
∗ (IRO(m)(τβf

d) ∩ q−1
∗ ([1]

(m)

τβ̄ f̄
d)) ⊂ IRO(m)(τβf

d
H).

Theorem 2.9. Suppose n > 0 is given. For an orbit [ᾱ]
(n)

f̄
∈ RO(n)(f̄),

let dα be the depth of [ᾱ]
(n)

f̄
, mα := n/dα, and ῑdα,n(β̄α) = ᾱ for some

βα ∈ G. If Fix(τᾱf̄
n) = {1} for all [ᾱ]

(n)

f̄
∈ RO(n)(f̄), and ῑm,mα is

injective for every m,mα with m | mα, then

]IRO(n)(f) =
∑

[ᾱ]
(n)

f̄
∈RO(n)(f̄)

]IRO(mα)(τβαf
dα
H ).

Proof. Clearly the irreducible Reidemeister n-orbit set IRO(n)(f) is

the disjoint union of IRO(n)(f) ∩ q−1
∗ ([ᾱ]

(n)

f̄
) for all [ᾱ]

(n)

f̄
∈ RO(n)(f̄).

When Fix(τᾱf̄
n) = {1}, [7, 1.12] tells us [ᾱ]

(n)

f̄
has the full depth prop-

erty. By Corollary 2.7 and Lemma 2.8

i∗ : IRO(mα)(τβαf
dα
H )→ IRO(n)(f) ∩ q−1

∗ ([ᾱ]
(n)

f̄
)

is a bijection for every [ᾱ]
(n)

f̄
∈ RO(n)(f̄). This completes the proof of

the theorem.

In the next eample we have a correction of [7, Example 1.16].

Example 2.10. (The Klein bottle). Let G be the fundamental group
of the Klein bottle, i.e. G := 〈α, β | βα = α−1β〉. The subgroup H :=
〈α〉 is a fully invariant normal subgroup of G and if M : Z→ Aut(Z) is
the homomorphism defined by Mk = M(k) = (−1)k for all k ∈ Z then G
is the external semidirect product of H and A := Z via M , it is the set
of all pairs (a, h) ∈ A×H, with the group operation (a1, h1) ∗ (a2, h2) =
(a1 + a2,Ma2(h1) + h2). The subgroup H ∼= {0} ×H ⊂ G is normal in
G and G/H ∼= A ∼= A× {0} ⊂ G. Let f : G→ G be an endomorphism.
Then fH : H → H and f̄ : A→ A are defined by elements of Mat1,1(Z),
thus they are integers u and w. In other words, fH(h) = uh for h ∈ H
and f̄(a) = wa for a ∈ A (see [2, Example 3 and 4]).

We will calculate IRO(2)(f) when u = 2 and w = 3. Since the
following sequence
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0→ Z 1−f̄2

−→ Z→ Z/Im(1− f̄2)→ 0

is exact, we can identify the 2-periodic point classes of f̄ , i.e. the ele-
ments of R(f̄2), with the elements of Z8. Thus the Reidemeister 2-orbit
set of f̄ is

RO(2)(f̄) = {[0]
(2)

f̄
, [1]

(2)

f̄
, [2]

(2)

f̄
, [4]

(2)

f̄
, [5]

(2)

f̄
},

where [0]
(2)

f̄
= {[0]f̄2}, [1]

(2)

f̄
= {[1]f̄2 , [3]f̄2}, [2]

(2)

f̄
= {[2]f̄2 , [6]f̄2}, [4]

(2)

f̄
=

{[4]f̄2} and [5]
(2)

f̄
= {[5]f̄2 , [7]f̄2}. For level 1, the setRO(1)(f̄) = R(f̄) ∼=

Z2 is {[0]f̄ , [1]f̄}. Since ῑ1,2 is multiplication by (1 + 3) = 4, the f̄ -orbits

[0]
(2)

f̄
and [4]

(2)

f̄
are reducible to level 1, i.e. ῑ1,2(0) = 0 and ῑ1,2(1) = 4,

the others are irreducible. For all a ∈ A and h ∈ H the conjugation
is (a, 0) ∗ (0, h) ∗ (−a, 0) = (0,M−ah), hence τafH(h) = (−1)−auh =

(−1)auh. Since Fix(τj f̄
2) = {0} for all [j]

(2)
f ∈ RO(2)(f̄), by [7, Theo-

rem 1.14] we have

]RO(2)(f) = ]RO(2)(τ0fH) + ]RO(2)(τ1fH) +
∑

j=1,2,5

]R(τjf
2
H)

= ]{[0]
(2)
fH
, [1]

(2)
fH
}+ ]{[0]

(2)
τ1fH

, [1]
(2)
τ1fH

, [2]
(2)
τ1fH
}+

∑
j=1,2,5

| 1− (−1)j22 |

= 18.

For level 1, the set RO(1)(fH) = R(fH) ∼= Z1 is {[0]fH}, and so [1]
(2)
fH

is irreducible. The set RO(1)(τ1fH) is {[0]τ1fH , [1]τ1fH , [2]τ1fH}, so all
Reidemeister 2-orbits of τ1fH are reducible. Thus by Theorem 2.9 we
have

]IRO(2)(f) = ]IRO(2)(τ0fH) + ]IRO(2)(τ1fH) +
∑

j=1,2,5

]R(τjf
2
H)

= 1 + 0 +
∑

j=1,2,5

| 1− (−1)j22 |

= 14.

3. Nielsen type irreducible essential n-orbit numbers.

Let X be a compact connected ANR. Let f : X,→ X be a map. We
denote by Fix(f) = {x ∈ X | f(x) = x} the fixed point set of f . The
set of fixed point classes is denoted by FP(f).
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Let n > 0 be a given integer. Then f acts on the set FP(fn) of
n-periodic point classes of f by Ffn 7→ f(Ffn). The f -orbit of a class

Ffn is called an n-orbit class, denoted by F
(n)
f . The set of n-orbit classes

is denoted by O(n)(f). Let E(fn) be the set of essential periodic point

classes of f . We denoted the set of essential n-orbit classes by EO(n)(f).

The essential n-orbit number EO(n)(f) is the the cardinality of it (see
[7]).

Let x be the base point in X, and take a path w from x to f(x) as the
base path for f . The induced endomorphism fw∗ : π1(X,x) → π1(X,x)
is defined by fw∗ (〈γ〉) = 〈wf(γ)w−1〉 for any loop γ at x. If w is the
constant path, fw∗ will be denoted by fx∗ . It is well known that every
fixed point class of f is assigned a Reidemeister class in R(fx∗ ), called
its coordinate. We get an injection ρ : FP(f) ↪→ R(fx∗ ), where R(fx∗ )
is the Reidemeister set in π1(X,x), defined by ρ(Af ) := [cf(c−1)w−1]fx∗
for any path c from x to a point x′ in Af . Thus we also get an injection

ρ : O(n)(f) ↪→ RO(n)(fx∗ ), defined by

ρ(A
(n)
f ) := [cfn(c−1)fn−1(w−1) · · · f(w−1)w−1]

(n)
fx∗

for any path c from x to a point x′ in A
(n)
f .

We define the irreducible essential n-orbit number IEO(n)(f) to be

the cardinality of the set IEO(n)(f) of irreducible essential n-orbit classes.
This number is a homotopy invariance (see [J, III.3.3, 3.4]). It is a
Nielsen type number in the general sence of [J, III.4.8].

We will need the mod K version of the Nielsen theory. If f,X and x
are as above, and if K is an fx∗ -invariant normal subgroup of π1(X,x),
then we denote the induced homomorphism on π1(X,x)/K by fx∗/K . We

then have the set RO(n)(fx∗/K) of Reidemeister fx∗/K-orbits, and the mod

K essential n-orbit number EO
(n)
K (f), that is the cardinality of the set

EO(n)
K (f) of mod K essential n-orbit classes. We also have an injection

ρK from the set of mod K n-orbit classes to the set of Reidemeister
fx∗/K-orbits, i.e.,

ρK : O(n)
K (f) ↪→ RO(n)(fx∗/K).

The mod K irreducible essential n-orbit number IEO
(n)
K (f) is defined

by the cardinality of the set IEO(n)
K (f) of mod K irreducible essential

n-orbit classes.
In this paper we will assume that all of our fibrations F ↪→ E → B

(with projection p : E → B) are Hurewicz fibrations with typical fibre,
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E and B path-connected (see [8]). For any b ∈ Fix(f̄n), we will denote
the restricted map on the fibre Fb := p−1(b) by fnb . For x ∈ E let
j : Fp(x) → E be the inclusion.

Proposition 3.1. [7, 2.4] Let p : E → B be a fibration of compact
connected ANR’s with path-connected fibres, and let f : E → E be a

fibre preserving map. If x ∈ E is in an essential n-orbit class F
(n)
f of

f , and p(x) is a fixed point of f̄ `, where ` | n, then the sequence (with
m := n/`)

(EO(m)
K (f `p(x)),KF

(m)

f`
p(x)

)
jE−→ (EO(m)(f `),F

(m)

f`
)

pE−→ (EO(m)(f̄ `),F
(m)

f̄`
)

is an exact sequence of based sets, where jE and pE are induced by the
inclusion j : Fp(x) → E and the projection p : E → B respectively, and
the base points are the essential orbit classes containing either x or p(x).

We call a subset ξ ⊂ Fix(f̄n) a set of essential n-orbit representatives
for f̄ if ξ contains exactly one point from each essential n-orbit class

F
(n)

f̄
∈ EO(n)(f̄).

Theorem 3.2. Suppose p : E → B is a fibration of compact con-
nected ANR’s with path-connected fibres, and f : E → E is a fibre
preserving map. Let ξ = {b1, b2, . . . , bk} be a set of essential n-orbit
representatives for f̄ . Let di be the depth of the n-orbit class of f̄ con-
taining bi, and mi = n/di for all i. If Fix((f̄n)bi∗ ) = {1} for every bi ∈ ξ,
and ῑm,mi is injective for every m,mi with m | mi, then we have

IEO(n)(f) =
∑
bi∈ξ

IEO
(mi)
K (gdibi ),

where g is the fibre preserving map from the Reducing Lemma, K is the
kernel of the homomorphism j∗ : π1(Fbi)→ π1(E) induced by the inclu-

sion of the fibre. In the condition Fix((f̄n)bi∗ ) = {1}, the endomorphism

(f̄n)bi∗ : π1(B, bi) → π1(B, bi) is meant to have the constant path at bi
as base path.

Proof. By Reducing Lemma [7, 2.2] there exists a homotopy H̄ con-
necting f̄ and ḡ such that bi ∈ Fix(ḡdi) for every bi ∈ ξ. By the homotopy
lifting property of the fibration p, the homotopy H̄ in B lifts to a fibre
preserving homotopy H = {ht : E → E}t∈I connecting f = h0 to some

g = h1. By homotopy invariance we have EO(n)(f) = EO(n)(g). So
without loss of generality (by rewriting g as f) we may assume that
bi ∈ Fix(f̄di) and g is the same as f .
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For each bi ∈ ξ, let F
(n)

f̄ ,i
be the essential n-orbit class containing it.

Clearly IEO(n)(f) =
⋃
i IEO

(n)(f)∩p−1
E (F

(n)

f̄ ,i
). So we only need to show

|IEO(n)(f) ∩ p−1
E (F

(n)

f̄ ,i
)| = IEO

(mi)
K (fdibi ).

In the following proof we shall drop the subscript i from our notation.
Suppose b ∈ ξ is in the essential n-periodic point class Ff̄n which in

turn is in the essential n-orbit class F
(n)

f̄
. Since d is the depth of F

(n)

f̄
,

Ff̄n alone constitutes an essential m-orbit class F
(m)

f̄d
⊂ F

(n)

f̄
. Suppose

IEO(m)(fd) ∩ p−1
E (F

(m)

f̄d
) 6= ∅. Choose F

(m)

fd
∈ IEO(m)(fd) ∩ p−1

E (F
(m)

f̄d
)

and x ∈ F
(m)

fd
such that p(x) = b. Then we have an exact sequence

1→ π1(Fb, x)/K
j∗→ π1(E, x)

p∗→ π1(B, b)→ 1.

Let KF
(m)

fdb
∈ EO(m)

K (fdb ) be the mod K essential orbit class containing

x. Then by Proposition 3.1 we have a commutative diagram of exact
sequences in the category of pointed sets:

(EO(m)
K (fdb ),KF)

jE−−−−−→ (EO(m)(fd),F
(m)

fd
)

pE−−−−−→ (EO(m)(f̄d),F
(m)

f̄d
)

ρK

y ρ

y ρ̄

y
(RO(m)((fdb )x∗/K), ρ(KF))

jx∗−−−−−→ (RO(m)((fd)x∗), ρ(F
(m)

fd
))

p∗−−−−−→ (RO(m)((f̄d)b∗), [1]).

The notation KF stands for KF
(m)

fdb
and [1] stands for [1]

(m)

(f̄d)b∗
. Note that

here we regard fd as a self map of the pair (E,Fb). The base path
is taken to be a path in Fb from x to fd(x), whose image in B is the

constant path at b. Hence the coordinate of F
(m)

f̄d
is the [1]

(m)

(f̄d)b∗
in the

lower right corner.

By the above commutative diagram and Corollary 2.2, KF
(m)

fdb
is irre-

ducible. When Fix((f̄d)bm∗ ) = Fix((f̄n)b∗) = {1}, Lemma 2.8 tells us

jx∗ : IRO(m)((fdb )x∗/K)→ IRO(m)((fd)x∗) ∩ p−1
∗ ([1]

(m)

(f̄d)b∗
)

is bijective. Thus we have a bijection

jE : IEO(m)
K (fdb )→ IEO(m)(fd) ∩ p−1

E (F
(m)

f̄d
).

Since p∗ and σ preserve essentiality, we have a commutative diagram
in the category of pointed sets:
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(EO(m)(fd),F
(m)

fd
)

pE−−−−→ (EO(m)(f̄d),F
(m)

f̄d
)

σ

y yσ̄
(EO(n)(f),F

(n)
f )

pE−−−−→ (EO(n)(f̄),F
(n)

f̄
).

Let w be the base path for f from x to f(x) in E, and p(w) = w̄ is
the base path for f̄ from b to f̄(b) in B. Then w̄n = w̄f̄(w̄) · · · f̄n−1(w̄)

is the base path for f̄n from b to f̄n(b) in B, and so [〈w̄−1
n 〉]

(n)

f̄ w̄∗
is the

coordinate of F
(n)

f̄
. When Fix(τ〈w̄−1

n 〉(f̄
w̄
∗ )n) = Fix((f̄n)b∗) = {1}, by [7,

1.12] the orbit ρ̄(F
(n)

f̄
) has the full depth property. Thus Lemma 2.5

tells us

σ : IEO(m)(fd) ∩ p−1
E (F

(m)

f̄d
)→ IEO(n)(f) ∩ p−1

E (F
(n)

f̄
)

is bijective. We get the desired equality |IEO(n)(f) ∩ p−1
E (F

(n)

f̄
)| =

IEO
(m)
K (fdb ).

Note that IEO(n)(f) = (1/n)NPn(f) and IEO
(n)
K (f) = (1/n)NPn,K(f)

(as defined in [6, III]). The following consequence is comparable to [3,
3.4].

Corollary 3.3. Under the conditions of Theorem 3.2, we also have

NPn(f) =
∑
bi∈ξ

di ·NPmi,K(gdibi ).

The principal application is to fibrations over tori. It should be useful
in calculations on nil and solvemanifolds.

Corollary 3.4. Suppose p : E → B is a fibration over a torus (of
any dimension). Then for any fibre preserving map f : E → E, the
summation formulae of Theorem 3.2 and Corollary 3.3 hold true:

IEO(n)(f) =
∑
bi∈ξ

IEO
(mi)
K (fdibi ) and NPn(f) =

∑
bi∈ξ

di ·NPmi,K(fdibi ).

Example 3.5. (The Klein bottle). Represent the Klein bottle K2

as the quotient R2/G, where G is the group of automorphisms on R2

generated by A : (x, y) 7→ (x, y + 1) and B : (x, y) 7→ (x + 1,−y). By
defining p : R2/G → S1 to be projection on the first factor we get the

standard fibration S1 ↪→ K2 p→ S1 of the Klein bottle. Given the map
(s, t) 7→ (rs, qt) on R2 induces a well-defined fibre preserving map f of
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K2. For r 6= 1, since the degree of f̄ is r, then f̄ has |r − 1| fixed point
xj ∈ Fix(f̄), where xj = j/|r − 1| with j ∈ {0, 1, . . . , |r − 1| − 1}. The
fibre maps fxj have degree (−1)jq (see [4, 4.6] and [3, 4.1]).

When r = 3 and q = −1, we will calculate IEO(3)(f). Note that
Fix(f̄3) = {xj | j = 0, 1, . . . , 25}, where xj = j/26. Then ξ = {xj | j =
0, 1, 2, 4, 5, 7, 8, 13, 14, 17} is a set of essential 3-orbit representatives for
f̄ . Since ῑ1,3 is multiplication by 1 + 31 + 32 = 13, by Corollary 3.4 we
have

IEO(3)(f) =
∑
j=0,13

IEO(3)(fxj ) +
∑
j 6=0,13

N(f3
xj ).

When xj ∈ ξ, the self map f3
xj has degree (−1)j(−1)3, and so N(f3

xj ) =

1 + (−1)j . Thus we have IEO(3)(f) = 8. Also, we have NP3(f) =

3 · IEO(3)(f) = 24.
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