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A NOTE ON NIELSEN TYPE NUMBERS

Seoung Ho Lee

Abstract. The Reidemeister orbit set plays a crucial role in the Nielsen
type theory of periodic orbits, such as the Reidemeister set does in Nielsen
fixed point theory. In this paper, using Heath and You’s methods on
Nielsen type numbers, we show that these numbers can be evaluated by
the set of essential orbit classes under suitable hypotheses, and obtain
some formulas in some special cases.

1. Introduction

Nielsen fixed point theory has been extended to Nielsen type theory of pe-
riodic orbits [5, III.3]. Let f : X → X be a self map of compact connected
ANR X. In Nielsen fixed point theory, the computation of the Nielsen number
N(f) often relies on our knowledge of the Reidemeister set, that is the set of
Reidemeister conjugacy classes in the fundamental group of X. Our aim in
this paper is to show that using the Reidemeister orbit sets (as defined in [7]),
the Nielsen type number NΦn(f) (first defined in [5, III.4.7]) can be evaluated
under certain conditions.

In [1, Theorem 5.1], the simple formua NΦm(f) = N(fm) for all m | n
was derived under suitable conditions. But under less conditons, we have the
formula

NΦm(f) = d(EO(m)(f))

for all m | n, where d(EO(m)(f)) is the sum of the depths of essential m-orbit
classes of f . Clearly, N(fm) ≤ d(EO(m)(f)).

Let EIO(n)(f) be the set of essentially irreducible n-orbit classes (see [6]).
From the procedure in [5] and comments in [3], we derive the simple formula

NΦpr (f) =
∑

m|pr

d(EIO(m)(f)),

where p is a prime and r is a nonnegative integer.
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This paper consists of three sections. In Section 2, we redefine the Nielsen
type number and obtain some formulas of Nielsen type numbers under certain
conditions. In the last section also, we derive a formula in the special case.

2. Nielsen type numbers

Let X be a compact connected ANR. Let f : X → X be a map. We define
the Nielsen relation on the fixed point set Fix(f). Two points x, y ∈ Fix(f) are
related if there is a path c from x to y such that f(c) is homotopic to c by a
homotopy keeping the end points fixed. The set of fixed point classes will be
denoted FP (f).

Let n > 0 be a given integer. Fixed point classes of the iterate fn : X → X
are called n-periodic point classes of f . Then f acts on the set FP (fn) by
Afn 7→ f(Afn). The f -orbit of a class Afn is called an n-orbit class, denoted by
A(n)

f . The set of n-orbit classes is denoted byO(n)(f). The length of the n-orbit

class A(n)
f is the smallest integer ` > 0 such that Afn = f `(Afn). Clearly `

divides n because Afn = fn(Afn). Standard fixed point index theory provides
an integer index ind(Afn) for each periodic point class Afn . A periodic point
class Afn is essential if its index is nonzero. We let E(fn) be the set of essential
periodic point classes of f . Then N(fn) the Nielsen number of fn is the
cardinality of E(fn). Also, f acts on E(fn) by Afn 7→ f(Afn). The f -orbit
of an essential fixed point class Afn of fn will be called an essential n-orbit
class, denoted by A(n)

f . The set of essential n-orbit classes will be denoted
by EO(n)(f). We [7] defined the essential n-orbit number EO(n)(f) or simply
EO(n) to be the cardinality of the set EO(n)(f). This number is a homotopy
invariant and it is a Nielsen type number in the general sense of [5].

On the other hand we recall that the Reidemeister operation on the fun-
damental group π1(X, x0) is the left action of π1(X,x0) on itself defined as
follows. Choose a path w from the base point x0 to f(x0) as the base path for
f , the left action is defined by

α ◦ γ = αγwf−1(α)w−1.

The set of orbits of the action will be called the Reidemeister set of f , denoted
by R(f). Let R(f) denote the cardinality of the Reidemeister set R(f). The
Redemeiter class of γ ∈ π1(X, x0) will be written [γ]f .

Let n > 0 be a given integer. Note that [γ]fn 7→ [wf(γ)w−1]fn defines
an action on R(fn). The f -orbit of a Reidemeister class [γ]fn will be called
a Reidemeister n-orbit, denoted by [γ](n)

f . The set of all such Reidemeister
f -orbits is called the Reidemeister n-orbit set of f , denoted by RO(n)(f).
The length of the orbit [γ](n)

f is the smallest integer ` > 0 such that [γ]fn =
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[w(`)f `(γ)(w(`))−1]fn , where w(`) stands for wf(w) · · · f `−1(w). Clearly ` di-
vides n. For ` | n, we have the commutative diagram

R(f `)
ι`,n−−−−→ R(fn)

y
y

RO(`)(f)
ι`,n−−−−→ RO(n)(f)

where the vertical maps are projections, and the horizontal maps are induced
by the level-change function ι`,n : π1(X, x0) → π1(X, x0) defined (as in [2,
Definition 1.9]) by

ι`,n(β) := βw(`)f `(βw(`))f2`(βw(`)) · · · fn−`(β)(w(n−`))−1.

We say that an f -orbit [α](n)
f ∈ RO(n)(f) is reducible to level h, if there exists a

[β](h)
f ∈ RO(h)(f) such that ιh,n([β](h)

f ) = [α](n)
f . The lowest level d = d([α](n)

f )

to which [α](n)
f reduces is its depth. Clearly, the length ` of the orbit [α](n)

f

divides the depth d. A Reidemeister orbit [α](n)
f ∈ RO(n)(f) is said to have

the full depth property if its depth equals its length, i.e., d = ` [7].
It is well known that every fixed point class of f is assigned a Reidemeister

class in R(f), called its coordinate. We get an injection ρ : FP (f) ↪→ R(f)
defined by ρ(Af ) := [cf(c−1)w−1]f for any path c from x0 to a point x in Af .
Thus we also get an injection ρ : O(n)(f) ↪→RO(n)(f) defined by

ρ(A(n)
f ) := [cfn(c−1)(w(n))−1](n)

f

for any path c from x0 to a point x in A(n)
f . The depth of an n-orbit class A(n)

f

is defined to be the depth of its coordinate ρ(A(n)
f ) [7]. Thus for any positive

integers ` and n with ` | n, we have the commutative diagram

O(`)(f)
ρ−−−−→ RO(`)(f)

i`,n

y
yι`,n

O(n)(f)
ρ−−−−→ RO(n)(f)

where i`,n : O(`)(f) → O(n)(f) is the function induced by Fix(f `) ⊂ Fix(fn).
For any subset A ⊂ ⋃

`|nRO(`)(f) we define d(A ) =
∑

[α]
(`)
f ∈A

d([α](`)f ).

For any subset B ⊂ ⋃
`|nO(`)(f), by the observation above, we also define

d(B) =
∑

A
(`)
f ∈B

d(A(`)
f ). The following definition is equivalent to definitions

in [5, 3, 4].

Definition 2.1. A subset A ⊂ ⋃
m|nRO(m)(f) is called a reducing system of

period n if every essential Reidemeister f -orbit [α](k)
f ∈ RO(k)(f) with k | n,
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reduces to an element of A , i.e., [α](k)
f = ι`,k([β](`)f ) for some [β](`)f ∈ A .

NΦn(f) = min{d(A ) | A is a reducing system of period n}.
This minimal number is equal to the Nielsen type number NFn(f) (as de-

fined in [5, III.4.7]). This number is a lower bound for the cardinality of the
set of the n-periodic points (see [5, III.4.12]). The set of irreducible essential n-
orbit classes is denoted by IEO(n)(f). Let IEO(n)(f) or simply IEO(n) denote
the cardinality of the set IEO(n)(f). Note that IEO(n)(f) = (1/n)NPn(f)
(as defined in [5, III.4.7]) and IEO(1) = EO(1) = N(f).

Essentially reducibility as defined in [1, Definition 4.1] is a property of orbits,
we have:

Definition 2.2. We say that a map f : X → X is essentially reducible provided
that for every essential k-orbit [α](k)

f , if it reduces to some `-orbit [β](`)f with

` | k, then [β](`)f is essential.

Proposition 2.3. If f is essentially reducible, then

NΦn(f) =
∑

`|n
`× IEO(`)(f).

Proof. See [3, Theorem 4.2]. ¤

Proposition 2.4.

IEO(k)(f) = EO(k)(f)−
⋃
`|k
`<k

i`,k(i−1
`,k(EO(k)(f))).

Proof. By definitions of IEO(k)(f) and EO(k)(f), it is clear. ¤

The following Lemma 2.5(3) is the same as Corollary 4.8 in [1], but we give
a simple proof of it.

Lemma 2.5. Suppose f : X → X is essentially reducible. Then we have the
following properties:

(1) i−1
`,k(EO(k)(f)) ⊂ EO(`)(f).

(2) EO(n)(f) ⊂ ⋃
`|n i`,n(IEO(`)(f)).

(3) If N(fn) = R(fn) 6= 0, then N(f `) = R(f `) 6= 0 for every ` | n.

Proof. (1) If A(`)
f ∈ i−1

`,k(EO(k)(f)), then there is an A(k)
f ∈ EO(k)(f) such that

i`,k(A(`)
f ) = A(k)

f . Clearly we have ρ(A(k)
f ) = ρ(i`,k(A(`)

f )) = ι`,k(ρ(A(`)
f )).

Since f is essentially reducible, ρ(A(`)
f ) is essential. Thus A(`)

f ∈ EO(`)(f).

(2) If A(n)
f ∈ EO(n)(f) has depth d, then there exists an irreducible essential

d-orbit [α](d)
f ∈ RO(d)(f) such that ιd,n([α](d)

f ) = ρ(A(n)
f ) since f is essentially

reducible. There exists an irreducible essential d-orbit class A(d)
f ∈ IEO(d)(f)
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such that ρ(A(d)
f ) = [α](d)

f because [α](d)
f is an irreducible essential d-orbit.

Thus ρ(id,n(A(d)
f )) = ιd,n(ρ(A(d)

f )) = ιd,n([α](d)
f ) = ρ(A(n)

f ) and so id,n(A(d)
f ) =

A(n)
f .
(3) If N(fn) = R(fn) 6= 0, then ρ : EO(n)(f) → RO(n)(f) is bijective.

Thus any element of RO(`)(f) is essential for every ` | n, because f is es-
sentially reducible and ι`,n(RO(`)(f)) ⊂ RO(n)(f) = ρ(EO(n)(f)). Therefore
ρ : EO(`)(f) →RO(`)(f) is bijective, so N(f `) = R(f `) 6= 0. ¤

Definition 2.6. We define EO(`,k)(f) = i−1
`,k(EO(k)(f)). The cardinality of the

set EO(`,k)(f) will be denoted by EO(`,k)(f) or simply EO(`,k).

Note that by Lemma 2.5(1), if f is essentially reducible, then EO(`,k)(f) ≤
EO(`)(f).

Example 2.7. For any selfmap f : X → X, by Proposition 2.4, we have

IEO(6)(f) = EO(6)(f)− (i3,6(EO(3,6)(f))∪ i2,6(EO(2,6)(f))∪ i1,6(EO(1,6)(f))).

Moreover, if for every `, k with ` | k, i`,k is injective, then

IEO(6) ≥ EO(6) − (EO(3,6) + EO(2,6) + EO(1,6)).

Theorem 2.8. If f : X → X is essentially reducible and for every m,n with
m | n, im,n is injective, then for a prime number p and a positive integer r, we
have

NΦpr (f) = N(f) +
∑

1≤`≤r

p` × (EO(p`) − EO(p`−1,p`)).

Proof. When f is essentially reducible, by Proposition 2.3, we have

NΦpr (f) =
∑

0≤`≤r

p` × IEO(p`).

If ` = 0, then IEO(1) = N(f). For ` > 0, there are inclusions

i1,p`(EO(1,p`)(f)) ⊂ ip,p`(EO(p,p`)(f)) ⊂ · · · ⊂ ip`−1,p`(EO(p`−1,p`)(f)).

Thus by Proposition 2.4, we have

IEO(p`)(f) = EO(p`)(f)−
⋃

0≤k<`

ipk,p`(EO(pk,p`)(f))

= EO(p`)(f)− ip`−1,p`(EO(p`−1,p`)(f)).

Since ip`−1,p` is injective, we get the desired equality IEO(p`) = EO(p`) −
EO(p`−1,p`). ¤

From the Definition 4.9 in [1], we have:
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Definition 2.9. We say that a map f : X → X is essentially reducible to the
GCD, if it is essentially reducible and whenever A(k)

f ∈ EO(k)(f) reduces to

both A(r)
f ∈ EO(r)(f) and A(s)

f ∈ EO(s)(f), then there is an A(`)
f ∈ EO(`)(f)

with ` = (r, s) to which both A(r)
f and A(s)

f reduce.

Lemma 2.10 ([1, Lemma 4.19]). Suppose that f : X → X is essentially
reducible to the GCD and i`,n is injective for every ` | n. If r 6= s with r, s | n,
then

ir,n(IEO(r)(f)) ∩ is,n(IEO(s)(f)) ∩ EO(n)(f) = ∅.
Proof. Assume A(n)

f ∈ ir,n(IEO(r)(f)) ∩ is,n(IEO(s)(f)) ∩ EO(n)(f). Then

A(n)
f is essential and reduces to both A(r)

f ∈ IEO(r)(f) and A(s)
f ∈ IEO(s)(f).

Since f is essentially reducible to the GCD, there exists an A(`)
f ∈ EO(`)(f) to

which both A(r)
f and A(s)

f reduce for ` = (r, s). Thus A(n)
f = ir,n(i`,r(A

(`)
f )) =

ir,n(A(r)
f ) implies i`,r(A

(`)
f ) = A(r)

f because ir,n is injective. Howerever, since

A(r)
f is irreducible, we have ` = r. Similary ` = s. This is in controdiction to

r 6= s. ¤

Recall [1, Definition 1.1] that a map f : X → X is weakly Jiang provided
that either N(f) = 0 or else N(f) = R(f).

Theorem 2.11. Suppose that f : X → X is essentially reducible to the GCD
and i`1,`2 is injective for every `1 | `2 | n. If f : X → X is such that N(fn) =
R(fn) 6= 0, then for all m | n,

NΦm(f ) = d(EO (m)(f )).

Proof. When f is essentially reducible and N(fn) = R(fn), by Lemma 2.5(3),
we have N(fm) = R(fm) for all m | n. Thus we need only prove the theorem
for m = n. For every ` | n, it is clear that i`,n(IEO(`)(f)) belongs to EO(n)(f)
since R(fn) = N(fn). Thus Lemma 2.5(2) and Lemma 2.10 tell us

EO(n)(f) =
⋃

`|n
i`,n(IEO(`)(f)),

where summands are disjoint. By definition of depth and i`,n is injective for
every ` | n, we have

d(EO(n)(f)) =
∑

`|n
d(i`,n(IEO(`)(f)))

=
∑

`|n
`× IEO(`)(f)

= NΦn(f )

the last equality follows from Proposition 2.3. ¤
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The next result is the same as [1, Theorem 5.1].

Corollary 2.12. Under the conditions of Theorem 2.11, and if every Reide-
meister f -orbit has the full depth property, then for all m | n,

NΦm(f) = N(fm).

Proof. It is clear that

d(EO(m)(f)) =
∑

A
(m)
f ∈EO(m)(f)

d(A(m)
f ) =

∑
`(A(m)

f ) = N(fm).

¤
Example 2.13. Consider the antipodal map on the sphere S2 = {(x, y, z) |
x2 + y2 + z2 = 1}, given by f(x, y, z) = (−x,−y,−z). By [5, II.4.1], we have
N(f2) = R(f2) = 1 because the Lefschetz number of f2 is L(f2) = 2. The
fundamental group of S2 is trivial, and so the essential 2-orbit [0](2)f ∈ RO

(2)
f

is reduced to level one which is inessential. Thus NΦ2(f) = 1.

3. Alternative approach on Nielsen type numbers

Recall [6, Definition in Section 2.2] that an n-orbit class A(n)
f ∈ O(n)(f)

and all n-periodic point classes contained in it are essentially irreducible if it is
essential and it does not reduce to any essential m-orbit class for any m < n.
The set of essetially irreducible n-orbit classes will be denoted by EIO(n)(f).
Let EIO(n)(f) or simply EIO(n) denote the cardinality of the set EIO(n)(f).
Note that EIO(1) = EO(1) = N(f) = IEO(1). Thus we have:

Proposition 3.1. IEO(n)(f) ⊂ EIO(n)(f) ⊂ EO(n)(f).

From comments in [3], we have:

Proposition 3.2.∑

`|n
d(IEO(`)(f)) ≤ NΦn(f) ≤

∑

`|n
d(EIO(`)(f)).

Proof. First inequality follows from Proposition 2.2. For the last inequality, it
suffices to show that ⋃

`|n
ρ(EIO(`)(f))

is a reducing system of period n.
(Case1) If an essential `-orbit [α](`)f ∈ RO(`)(f) with ` | n is irreducible, then

by Proposition 3.1, we have [α](`)f ∈ ρ(EIO(`)(f)).

(Case2) Suppose an essential k-orbit [α](k)
f ∈ RO(k)(f) with k | n has depth

d < k. If it does not reduce to an essential `-orbit for d ≤ ` < k, then it belongs
to ρ(EIO(k)(f)). On the other hand, if [α](k)

f reduces to an essential `-orbit

[β](`)f ∈ RO(`)(f) with d ≤ ` < k and it does not reduce to an essential r-orbit

for d ≤ r < `, then it reduces to [β](`)f ∈ ρ(EIO(`)(f)). ¤
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Let A be a reducing system of period n. For every essential k-orbit [α](k)
f

with k | n, we define C
[α]

(k)
f

= {[β](`)f ∈ A | ι`,k([β](`)f ) = [α](k)
f }. Note that by

Definition 2.1, it is nonempty as a subset of A .

Lemma 3.3. Suppose n = pr for a prime p and a positive integer r. If
[α](s)f , [β](t)f ∈ ∪k|nρ(EIO(k)(f)) with [α](s)f 6= [β](t)f , then C

[α]
(s)
f

∩ C
[β]

(t)
f

= ∅.

Proof. Assume that [γ](`)f ∈ C
[α]

(s)
f

∩C
[β]

(t)
f

. This means that [α](s)f = ι`,s([γ](`)f )

and ι`,t([γ](`)f ) = [β](t)f . If s = t, then [α](s)f = [β](t)f . On the other hand, if s < t,

then s | t since n = pr. Thus we have [β](t)f = ι`,t([γ](`)f ) = ιs,t ◦ ι`,s([γ](`)f ) =

ιs,t([α](s)f ). This is in contradiction to [β](t)f is essentially irreducible. ¤

From the procedure in [5] and comments in [3], we have:

Theorem 3.4. For a prime p and a nonnegative integer r,

NΦpr (f) =
∑

`|pr

d(EIO(`)(f)).

Proof. By Proposition 3.2, it suffices to show that d(∪k|nEIO(k)(f)) is min-
imal for n = pr. Let A be a reducing system of period n and [α](k)

f ∈
∪k|nρ(EIO(k)(f)) be given. We define a function φ : ∪k|nρ(EIO(k)(f)) → A

by φ([α](k)
f ) = r(C

[α]
(k)
f

), where r(C
[α]

(k)
f

) is the representative of the set C
[α]

(k)
f

,

and it is injective by Lemma 3.3. Thus we have d(∪k|nEIO(k)(f)) ≤ d(A ) [3,
Lemma 3.6]. ¤

Example 3.5. Consider the flip map on S1. Here for r ≥ 0, we have

NΦpr (f) =
∑

`|pr

d(EIO(`)(f)) = EIO(1) = N(f) = 2.
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