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A RELATIVE REIDEMEISTER ORBIT NUMBER

SEOUNG Ho LEE AND YEON Soo YooN

ABSTRACT. The Reidemeister orbit set plays a crucial role in the
Nielsen type theory of periodic orbits, much as the Reidemeister set
does in Nielsen fixed point theory. In this paper, extending Cardona
and Wong’s work on relative Reidemeister numbers, we show that
the Reidemeister orbit numbers can be used to calculate the relative
essential orbit numbers. We also apply the relative Reidemeister
orbit number to study periodic orbits of fibre preserving maps.

1. Introduction

Nielsen fixed point theory has been extended to a Nielsen type theory
of periodic orbits [9, II1.3]. In fixed point theory, the computation of
the Nielsen number often relies on our knowledge of the Reidemeister
set, that is the set of Reidemeister conjugacy classes in the fundamental
group. Our aim in this paper is to introduce relative Reidemeister orbit
numbers and show that the relative Reidemeister orbit numbers can be
used to calculate the relative essential orbit numbers, and as application,
we use the relative Reidemeister orbit numbers to study periodic orbits
of fibre preserving maps.

In Nielsen fixed point theory, the relative theory was introduced by
H. Schirmer [11]. The relative Nielsen number has many connections
with Nielsen type theory. The relative Nielsen number of a map f :
(X, A) — (X, A) is defined by N(f; X, A) = N(f) — N(f, fa) + N(fa),
where N(f, fa) denotes the number of essential common fixed point
classes of f and fa. The relative Reidemeister number in [2] is defined
by R(f; X, A) = R(f) — R(f, fa) + R(f4), where R(f, f4) is the number
of Reidemeister classes of homomorphisms induced by f, which satisfies
certain conditions. A Jiang-type theorem for a map of pairs was also
proved.
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Let X be a compact connected polyhedron, and A C X a finite
subpolyhedron. Let f : (X,A4) — (X, A) be a map of pairs. We de-
fine the relative Reidemeister n-orbit number of f by RO™(f; X, A) =
RO™(f4) + ROM™(f) — ROM(f, f4), and prove a Jiang-type theorem
for this number as follows: Under certain conditions, we have

EO™(f; X, A) = RO™(f, X, A),

where EO™)(f; X, A) is the relative essential n-orbit number introduced
in Section 2. Note that here although in the relative Reidemeister num-
ber we can choose the base path in the component of A identical with
the base path in X, in the relative Reidemeister n-orbit number the base
path for the component does not inherit the base path in X.

We consider a fibre preserving map f : F — E of a Hurewicz fibration
p : E — B of compact ANR’s. It induces a map f : B — B. We
generalize the relationship between relative Nielsen theory and Nielsen
theory for fibre preserving maps as obtained in [4] and [2] as follows:
Under suitable conditions, certain relative essential n-orbit number of f
can be calculated by a Reidemeister n-orbit number as follows:

EO™)(g; E, F,) = ROM(f) = 3 ROM) (ghi),
b;eg

where g is the fibre preserving map from the Reducing Lemma in [10],
¢ is a set of essential n-orbit representatives for f, &, is a reduced g-
invariant set with respect to £, ¢; is the length of the essential f-orbit
class containing b; € £, m; = n/{;, and Fy, := Upee, p~1(b).

The paper consists of four sections. In Section 2, we define the relative
Reidemeister n-orbit numbers and prove some of their properties. The
relative essential n-orbit number of f on the pair is defined and a Jiang-
type theorem is proved in Section 3. In the last section we apply them
to fibre preserving maps.

For the basics of Nielsen fixed point theory, the reader is referred to
(1] and [9]. ‘

2. Relative Reidemeister n-orbit numbers

Let X be a compact, connected polyhedron, and A C X a finite
subpolyhedron. Let f : (X,A) — (X, A) be a map of pairs. Let A =
UAg be the disjoint union of all the connected components of A, then
we define the restrictions fi = fla, : Ak > Ajand fa = fla: A — A
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We denote by Fix(f) = {z € X | f(z) = z} the fixed point set of
f. Two fixed points z,y € Fix(f) are Nielsen related if there is a path
A from z to y such that f(\) is homotopic to A by a homotopy keeping
the end points fixed. This relation divides Fix(f) into a finite number
of fized point classes of f. The set of fixed point classes will be denoted
by FP(f).

Let n > 0 be a given integer. Then f acts on the set FP(f™) of
n-periodic point classes of f by F» +— f(F¢n). In [10], the f-orbit of a
class F ¢» is called an n-orbit class, denoted by F(fn). The set of n-orbit

classes is denoted by O™ (f). The length of the orbit Fgcn) is the smallest

integer £ > 0 such that Fn = f¢(F ) (see [10] for details).

Let 2o be the base point in X, and take a path w from zg to f(xg)
as the base path for f. The induced endomorphism f¥ : m1(X,z0) —
m1(X, zo) is defined by

o) = (wf(y)w™) for any loop vy at xg.
For n > 1, we have (f™)¥» = (f¥)" if the base path for f" is taken
to be wy, = wf(w)--- f*"(w). For the sake of convenience, denote
the induced endomorphism f¥ : m(X,z9) — mi(X,z0) by ¢, and
m1(X,20) := mx. Note that the endomorphism f;° depends on the
homotopy class of w.

NOTATION. Suppose G is a group. For a € G, let 7, : G — G denote
the conjugation defined by 7,(8) = afa~!.

REMARK 2.1. If zp is an n-periodic point of f, then w, is a loop at
zg. Thus we have
(F)" = Tpny © (F7)3°,
where xg is the constant path at x.

Given ¢ : mx — mx, we have the Reidemeister left action of mx on

Tx, given by ’

B-a=pap().
The Reidemeister classes are the orbits of this action, and the set of
Reidemeister classes is denoted by R(¢). The Reidemeister number of
f is given by R(f) = iR(p), where § denotes the cardinality.

Let n > 0 be a given integer. Then ¢ acts on the Reidemeister set
R(¢™) by [e]gn % [p(a)],n. In [10], the p-orbit of a Reidemeister class
[a],n is called the Reidemeister n-orbit of ¢, and denoted by [a]son). The
Reidemeister n-orbit set of ¢ is the set of all such p-orbits, denoted by
RO™ (). The Reidemeister n-orbit number RO™(f) is defined to be
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the cardinality of the set RO™ (). The length of the orbit [a];n) is the
smallest integer £ > 0 such that [a]» = [f¥(a)] .

It is well known that every fixed point class of f is assigned a Reide-
meister class in R(y), called its coordinate. We get an injection

p: FP(f) = R(y),

defined by
p(Fy) = [{cf(cTHw ™),

for any path c from zg to a point z in Fy. Thus we also get an injection
p: 0T (f) = ROM(p),
defined by
p(FY) = [(ef™ ()" w ™) flw™ S
for any path ¢ from z( to a point z in F;n).

The following example shows that the coordinate of a fixed point class
depends on the choice of the base point of the space (and base path for
f)-

EXAMPLE 2.2. Define f : S — S! by f(e¥) = €3#. Then Fix(f) =
{e?mk/3-1) . k = 1,2} := {—1,1}. Since the degree of f is 3, N(f) = 2
(see [9] and [6]). The fundamental group m(S*,1) 2¢ Z is generated by
the path 7 obtained by travelling S once, starting at 1, in the counter-
clockwise direction. If we take the constant path at 1 as base path for
f and let ¢ = fl, then R(y) := {[0],, [1],} and [0], is the coordinate
of {1} € FP(f). Now select the path ¢ to be the arc of S from 1 to
—1 passing through the north pole. Then [{cf(c™!))], = [(n™)], = [1],
is the coordinate of {—1} € FP(f). On the other hand, m;(St, —1)
is generated by the path ¢ obtained by travelling S! once, starting at
—1, in the counter-clockwise direction. If we take the constant path at
—1 as base path for f and let ¢/ = f71, then [0],s is the coordinate of
{—1} € FP(f). Now select the path X to be the arc of S* from —1 to 1
passing through the south pole. Then [(Af(A\™1))],r = (1] = [1]y
is the coordinate of {1} € FP(f).

Example 2.1 justifies the following remark.

REMARK 2.3. The @p-coordinate of a fixed point class Fy € FP(f)
means its coordinate in R(p).
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For m | n, we have a commutative diagram of pointed sets

R(g™ "% R(p™)

! !

ROM™ () 225 ROM (),

where the vertical maps are projections, and the horizontal maps are
induced by the level-change function ¢, : 7x — 7x defined by

Lm,n(ﬂ) ﬂ%om(ﬂ) 2m(ﬁ) " m(l@)

Recall that an ¢-orbit [a]sgn) € RO™)(yp) is reducible to level h, if there
exists a [B]fph) € RO™(yp) such that Lh,n([ﬂ]&h)) = [a]fp"). The lowest

level d = d([a]'gpn)) to which [a]s(pn) reduces is its depth. The depth of an
n-orbit class is defined by the depth of its coordinate. A Reidemeister
orbit [oz]fon) € RO™(y) is said to have the full depth property if its
depth equals its length, i.e., d = ¢ (see [10]).

PROPOSITION 2.4. For any m | n, the following diagrams commute:

FP(f*) —t— R(¢") om(f) —£— ROM(yp)
fl ltp and vl lbm,n
FP(f) —2— R(p") om(f) —£— ROM(yp),

where ~y is the function induced by inclusion.

PROOF. See [6, Proposition 1.14]. O

PROPOSITION 2.5. For the base path w, at xq as above, for any path
p from xq to f(xo), let un = pf(u)--- f*~1(u). Then there is an index
preserving bijection
T : ROW(fE) — ROW(£2)
given by . w, (1)) %
p=p

PROOF. See [6] and [14]. O

) = oy} Furthermore, we have ry,u,

PROPOSITION 2.6. For the base path w, at xg as above, for any
xz € X, let u be a path from z to xg, and A a path from x to f(z). Then
there is an index preserving bijection

uy : ROM () — ROM(f¥)
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defined by u,([(1)]'})) = [(u™yAn fr(ww )] ), where Ay = Af(A) -
. Furthermore we have u, 0 p = p.

PROOF. See [6] and [14]. O

Note that the concept of depth of an f-orbit class does not depend
on the choice of the base point and the base path for f (see [6, Theorem
A)).

Let A;, with j = 1,2,...,r, be those components of A which belong
to an fa-cycle, J, = {1,...,r}, and C(f4) the set of equivalence classes
of J.. Now let [A;] be an f4-cycle of length ¢(j) for which m; := n/c(j)
is an integer. For each Ay in this cycle there is a cornmutative diagram

fC(j)
Ay —— Ay

i l lik

X fe@) X
of path-connected spaces (for full details see [7, 3.3] and [8, Section 2]).

For a glven integer n > 1, the following example shows that the base
path for f U) does not inherit the base path for f.

EXAMPLE 2.7. Take the function f : S — S! of Example 2.2. In
the particular case n = 2, then we have Fix(f2) = {e2/(3*-1) ; | =
.,8}. Let A = {1,e™/* €37/4}, A} = {1}. Then there are two f4-
cycles such that £([A; = {1}]) = 1 and £([As = {€™/*}]) = 2. Take the
point €™/* as the base point then the constant path at base point is the
base path for f2. But the base path for f is a path w in S from ™4 to
f(e™*) = /4. Note that wy = wf(w) is not the constant path at base
point, and by using the constant path at base point as the path ¢ in the
definition of p, then [(w; )](213 is the f* -coordinate of {e™4} € OP)(f).
And similarly [1](f§)s,r/4 is the (fz)* *_coordinate of {e™/*} € FP(f3).
For the inclusion map iy : (Ag,z) — (X, ), let w be the base path
for f from z to f (z) in X and w, the base path for f*. Let go = fu.
Since Ay is f°U)-invariant, we can take the base path u for fk 0 from
z to f,g(j)(m) = f°U)(z) in Ag. Then pm, = pfeO () - fre0) () is a
path from z to f*(z). Let ¥ be the homomorphism (<)) on 7 (X, z)

and 1) the homomorphism ( f,s(J ))i‘ on m1(Ag,z). Then we have the
following:
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ProPOSITION 2.8. Under the above conditions, there is a commuta-
tive diagram:

Olms) (fE0) TP, olms)(fel)y T, O)(f)

[ K I
ROM) (ghy) 520, ROtms) (pe)) —2 s ROM (),
where i rp is a function induced by the inclusion, iy ;) is a function

induced by the inclusion iy and 7 i 0m and the map o is induced by
the inclusion.

PROOF. Let (i)y : m1(Ak, ) — m1(X,2) be the homomorphism in-
duced by ;. Since a fundamental group can be identified with the group
of covering translations, we have a well-defined map i . : RO™) (Yr) —
RO™3) () given by ik,*([a]g:")) = [(ik)ﬁ(a)]fpm") (see [9] and [2]). Since
Wn = (We(;))m;, by Proposition 2.5 there is an index preserving bijection
T b . RO (1) — RO (1)), Let ik,c(;) be the composition of
i,x and T im0 The map

inzp : FP((fiU)™) — FP((f0ym)

induced by the inclusion induces a map i p : O (f20) — Q) (o)),
The map o induced by the inclusion is defined by 0([ﬁ]$’kj)) = [ﬁ]fp") for

any [,@]ZZD € RO (49). Note that o is surjective (see [10, 1.7]). It

is easy to see the diagram commutes. O

DEFINITION 2.9. The induced homomorphism 9 = (f¢¢))# in Propo-
sition 2.8 will be called an associated homomorphism with ). We

define
ROM(pa) = JRO™)(yy) and  ia:=U 0 oisey),
il

where the disjoint union is taken over all equivalence classes [j] € C(fa),
and mj := n/c(j) is an integer. Similarly, we define

0" (£4) = Om(FD).
K]
If Fgn € FP(f") is a weakly common fixed point class of f* and
/% in the sense of [15, 2.2], then the f-image of Fyn is weakly com-
mon. Then we define the set of weakly common n-orbit classes of f and
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fa in OW(f), and denoted it by O™ (f, f4). As in [2], we have the
corresponding set from an algebraic point of view as

DEFINITION 2.10. A Reidemeister n-orbit [a]&") e RO™(p) is an
(algebraically) weakly common n-orbit of ¢ and @4 if there exists a Rei-
demeister m-orbit [ﬂ]g:) in RO™(p,4) such that iA([ﬂ]l(;:)) = [a]g),
where m := n/c(j) and 1 is an associated homomorphism with @),
The set of all such weakly common n-orbits of ¢ and ¢4 will be denoted

by RO™ (¢, 04).
We write RO™(f, f4) for the cardinality of the set RO™ (¢, w4).

DEFINITION 2.11. The relative Reidemeister n-orbit number of f on
the pair (X, A) is defined as
RO™(f; X, A) = RO™(f4) + RO™(f) — RO™({, fa),
where RO (f,) is the cardinality of the set RO™ (i 4).

Note that if n = 1 then we can regard the fixed point of f as the
base point in the corresponding component. Thus the associated homo-
morphism 1 is identical with the original one p. So ROW(f; X, A) =
R(f; X, A) is the relative Reidemeister number of f introduced in [2].

3. Nielsen type relative essential n-orbit numbers

Recently we defined the essential n-orbit number EO™(f) to be
the cardinality of the set £O™(f) of essential n-orbit classes in [10,
Definition 3.1]. Since f-images of essential common fixed point classes
of f* and f7 are essential common, we can define

as the cardinality of the set 80(”)( f, fa) of essential common n-orbits
of f and fa.

DEFINITION 3.1. The Nielsen type relative essential n-orbit number
of f on the pair (X, A) is defined as

EOW(f; X, A) = EO™ (f4) + EOW™(f) — EO™(f, f4),

where EO™(f4) = 20 EOm)( fz(j )), the summation runs over all
equivalence classes [j] € C(fa), and m; := n/c(j) is an integer.

Note that EO™(f; X,0) = EO™(f; X, X) = EO™(f) is a Nielsen
type number in the general sense of [9, I11.4.8].
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If n = 1, then EOM(f; X, A) = N(f; X, A) is the relative Nielsen
number introduced in {11, 2.4].

As in [11], the relative essential n-orbit number EO™(f; X, A) sat-
isfies the basic properties such as homotopy invariance, commutativity
and homotopy type invariance. The proofs of Proposition 3.2, 3.3 and
3.4 are standard.

PRroPoOSITION 3.2. (Homotopy invariance) If the maps f,g : (X, A)
— (X, A) are homotopic, then EO™(f; X, A) = EO™(g; X, A).

ProprosiTiON 3.3. (Commutativity) If f : (X,A4) — (Y,B) and
g:(Y,B) — (X, A), then EO™(go f; X,A) = EO™(fog;Y,B).
ProposITION 3.4. (Homotopy type invariance) If f : (X, A4) —

(X,A) and g : (Y,B) — (Y, B) are maps of the same pairwise homotopy
type, then EO™(f; X, A) = EO™(g;Y, B).
Recall in [13] that a space X is said to be of Jiang-type if the following
conditions are satisfied for all selfmaps f: X — X.
(Cl) L(f)=0= N(f) =0
(C2) L(f) #0= N(f) = R(f).
A Jiang-type result was proven in [2] for selfmaps f : (X, A4) —
(X, A). Extending that result, we have
THEOREM 3.5. Suppose n > 0 is given. Suppose that (X, A) is
a pair of Jiang-type spaces such that L(f") - (II}; L((f,j(]))mj)) # 0
for which m; := n/c(j) is an integer, then we have EOW(f: X, A) =
ROM(f; X, A).

PROOF. By hypothesis, L(f™) # 0 and L((f%))™) # 0 for every [4].
Since X is a Jiang-type space and L(f") # 0, it follows that N(f") =
R(f™). By Proposition 2.3, the length of an essential n-orbit class is
the same as the length of its coordinate. Thus we have EO™(f) =
ROM(f). Also, since A is a Jiang-type space and L(( f,f(j ))mi) # 0 for
every [j]|, we have EO(mj)(f,:(j)) = RO(mJ‘)(f,j(j)) for every [j].

The equality

N(f", f2) = R(f™, f3)
was proved in the proof of [2, 3.2](with f and fa4 replaced, whenever
those occur, by f™ and f% respectively), thus we have EOM)(f, fa) =
RO™(f, fa). O
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4. Fiber-preserving maps

First of all, we introduce our Reducing Lemma in [10] as the main
tool of this section.

REDUCING LEMMA [10]. Suppose X is a compact connected ANR,
and f : X — X is a map. Suppose z € Fix(f") lies in an n-orbit class
Fs,n) of depth d. Then there exists a homotopy H = {h; : X — X }o<i<1
connecting f = hy and g = hy, such that

(1) = € Fix(g%).

(2) The loop H™(z) = {h}(x)}o<t<1 is contractible in X.

(3) H equals f outside of an arbitrarily given neighborhood of the
point fé¢1(z).

Note that in the Reducing Lemma, d is the length of the g-orbit of
z, and the g-orbit of z is a subset of f-orbit of z. In other words f*(x)
is equals to ¢*(z) for all 1 =0,1,2,...,d -1, i.e.,

{z.9(2),-., 0 (@)} C {z, f(2), (), }.

In this paper we will assume that all of our fibrations FF — E — B
(with projection p : E — B) are Hurewicz fibrations with typical fibre,
E and B path-connected (see [12]). We say that f : E — FE is a fibre
preserving map provided there is a well-defined map f : B — B with
pf = fp. When such a map exists it is unique, and when B is a path
connected locally path connected space it is enough that for all b € B
the restriction of f takes the fibre F} := p~1(b) to another fibre. For any
b € Fix(f™), we will denote the restricted map on F, by -

For z € E let j : Fj;y — E be the inclusion and K denote the kernel
of the homomorphism

j* : ﬂl(Fp(x),x) -— 7T1(E, .Z‘)

An addition formula of Reidemeister orbit sets for an arbitrary group
endomorphism was proved in [10]. Applying that result to fibre preserv-
ing maps, we have

ProposITION 4.1. Suppose p : E — B is a fibration of compact
connected ANR’s with path-connected fibres. Let f : E — E be a
fibre preserving map. Let b € Fix(f") and let F}") be the n-orbit class

(m)
% S

ROM) (4h), let d,, be the depth of [a]g”), Mo = m/dy, and g, m(Ba) = &

containing b with depth d, and m := n/d. For an m-orbit (@]
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for some B, € m1(E, z). If Fix(r59™) = {1} for all [dL(ZJm) € RO™) (4,
then
ROM(f) =RO™M(yp) = > RO (15,9),
@M erRO™ ()
where p(z) = b, for a path p from x to gd(_a:) in Fy, the notation
stands for the induced endomorphism (g%)¥, 1 stands for (%) , and

stands for (gg)/: K Here g is the fibre preserving map from the Reducing
Lemma.

PRrOOF. By homotopy invariance we have RO (f4) = RO™)(g%).
So without loss of generality (by rewriting g% as f%) we may assume that
b € Fix(f?) and ¢¢ is the same as f¢.

Consider the exact sequence

1 — m(Fy,x)/K Ei m(E,z) 5 n(B,b) — 1.

Since b € Fix(f?), take a path u from z to f%(z) in F}, so we can assume
that m (Fy,z)/K is an (f%){-invariant normal subgroup of m1(E,x).
Then we have a commutative diagram of exact sequences of groups:

1 —— m(Fya)/K —2— m(E,z) 2 my(B,b) — 1

[v |v k:

1 —— m(Fy,a)/K —— m(E,z) — m(B,b) — 1.
Hence the proof of the theorem is completed by [10, Theorem 1.14]. 0

The following was also proved in [3] for n = 1.

COROLLARY 4.2. Suppose the n-orbit class FE;") containing b is irre-
ducible. If Fix(rath) = {1} for all @y € R (),
R =Ry = > #R(rath),
(@R ()

where for a path p from z to f"(z) in Fy, the notation v stands for
the induced endomorphism (f™)% and similarly for . The notation
stands for (fg‘)f/K.

Note that we do not need the Reducing Lemma in the proof of it.

ProOOF. If the n-orbit class F}") containing b is irreducible, then d =
n, so we have the corollary. O
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(n)
f

ducible to 1. For a n-orbit [d]f/;") e ROM™(4), let dy be the depth
of [8]™, ne := n/da, and ta, n(Ba) = @ for some B, € m(E,z). If

COROLLARY 4.3. Suppose the n-orbit class F'.’ containing b is re-

1,5 ’
Fix(75") = {1} for all [&]5" € RO™ (%), then
ROM(f) =fROM) = > HROM(rg, ),

@57 erRO™ ()

where p(x) = b, for a path p from x to g(z) in F}, the notation ¢ stands
for the induced endomorphism g, ¢ stands for §° , and vy stands for
(gv)" K Here g is the fibre preserving map from the Reducing Lemma.

In [10], we call a subset ¢ C Fix(f™) a set of essential n-orbit represen-
tatives for f if & = {b1,b2,...,b;} contains exactly one point from each

essential n-orbit class F}n) € E0M(f). By the Reducing Lemma, there

exists a fibre preserving map g homotopic to f such that b; € Fix(g%)
for the depth d; of an f-orbit class containing b; for each i = 1,2,...,k
(see [10]). Thus we can define a reduced g-invariant set with respect to
£, denoted by &, i.e.,

€n = {03, §(0:), 8 (b), - .-, g% (bs) | i € £}
We denote by ge, the map g restricted to Fy, := Upeg, p~*(b).
The following proposition is a generalization of [4, Theorem 4.4.(1)].

PROPOSITION 4.4. Suppose p : E — B is a fibration of compact
connected ANR’s with path-connected fibres, and let f : E — E be a
fibre preserving map. Suppose every essential f-orbit class has the full
depth property. Let & be a set of essential n-orbit representatives for f,
and &, the reduced g-invariant set with respect to &. Then

E'O(n)(g; E,F.) = EO(")(ggn) = Z Eo(mi)(gg;),
b€

where d; is the depth of the g-orbit class containing b;, and m; = n/d;.

PROOF. Since every essential n-orbit class has the full depth prop-
erty, we can assume that &, is the set of the essential representatives
of g" as follows: Let d be the length of g-orbit class containing b. By
Reducing Lemma, the sets {Fg; (|0 < j < d} are pairwise disjoint and
9(Fgiwy) = Fysr1(p). Thus ge,-cycle [Fp] has length d, and clearly the
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set C(ge,) has the same cardinality as the set £&. Thus we have the last
equality.

Also for the fibre preserving map g : (E, Fe,) — (E, Fg,), every
essential n-periodic point class of g is essential common (see [4]). By
the definition of the relative essential n-orbit number, we have the first
equality. O

The following theorem is a generalization of [2, Theorem 5.2].

THEOREM 4.5. Suppose p : E — B is a Hurewicz fibration with
typical fibre Fy,, b € B, E and B compact connected ANR’s. Let f :
E — FE be a fibre preserving map. Suppose that wo(B) is trivial. Let
¢ be a set of essential n-orbit representatives for f, and &, the reduced
g-invariant set with respect to . If Fix((f_")gi) = {1} for every b; € £,
then we have

RO™(g; B, Fy,) = RO™(f),
where g is the fibre preserving map from the Reducing Lemma. If, in
addition, Fy, and E are Jiang-type spaces and L(g")(] [,c¢ L((gg:)mi)) #
0 for every b; € ¢ , then

EO™ (9; E, an) = RO(”)(f) = Z RO(mi)(gZii)7
bieg

where d; is the depth of the n-orbit class containing b; and m; := n/d;.

PROOF. By homotopy invariance we have RO™(f) = RO™(g). So
without loss of generality (by rewriting g as f), we may assume that &,
is f-invariant and g is the same as f.

For each b = p(z) € &, since m2(B) is trivial, we have the short exact
sequence of groups

1 - m(Fp,x) I T (E,2) 2 71(B,b) — 1.

Suppose b € £ is in the essential n-periodic point class F s which in

turn is in the essential n-orbit class F}") with depth d and m = n/d.
Since d is the depth of F;—n), F . alone constitutes an essential m-orbit
class F}T) - F}n).

Let w be the base path for f from z to f(z) in FE and f¥ = ¢. Then
Wy, := wf(w)--- f*"!(w) is the base path for f* from z to f*(z) in E
and p(w) = w is the base path for f from b to f(b) in B. Then we have
@ = f¥. Thus by using the constant path at base point as the path ¢
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in the definition of p, [(w;, )]g;‘) [((Wg)rm )];m) is the @%-coordinate of

F}d) and &([( ‘_1)](m)) = [(w _1) ™) is the @-coordinate of FEF ),

Since the path connected fibre F} is finvariant, we can choose the
base path  for f¢ in Fy from z to f&(z) = f%(x). Then b = p(y) is the
constant path at b, the associated homomorphism with ¢¢ is ¢ = (f9)¥,
and ppm := pf(u)--- 7% u) is a path from z to f*(z) in Fy. Thus
we have ¥ = (f%)%. Since p(um) = b is the constant path at b, by
Proposition 2.5, rb,wn([l]%m)) = [(w;, 1)]5;3), so we have a commutative
diagram of exact sequences in the category of pointed sets:

(RO (), [115™) (RO (y), V) —2=— (RO (), [1ITV) -1

T#mvwnl lrb wn

(RO (%), [o] () —22— (ROC™ (%), (" NUP) — 1,

where « stands for {um,w;, ). Since Fix((1)™) = Fix((f*)%) = {1}, by
[10, 1.6] 57 is injective. Let 454 be the composition of j¥ and 7, 4.,
When Fix(7;-1,¢") = Fix((f*)}) = {1}, by [10, 1.12] the @-coor-

dinate of Fg;n) has the full depth property. Thus d is the length of F}") ,

by [10, 1.7] we have a commutative diagram of exact sequences in the
category of pointed sets:

(RO (), [] 1) —2m (RO (3%, (7)) —— 1
(ROM(p),[))) 2o (ROM™(g), (w7 )]F) —— 1.
Furthermore, o restricts to a bijection
o ([(w ) — T (IS,

Combining upper two diagrams, then the composite function as in
the definition 2.9

o 0 g : RO (1) 225 RO (o) 25 ROM) (i)

is injective for every b € ¢, in fact, ROM™)(fd) = Ip;l(ﬁ(F}n)))l.
As the first part in the proof of Proposition 4.4, the reduced f-
invariant set &, tells us

RO(") (fe,) Z RO (f,

b; €€
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For i € £ — {b}, choose a point z’ € p~1(¥') and a path X from z’ to
f(z') in E, let u be a path from 2’ to z in E. By Proposition 2.6 there
is a commutative diagram

E0(f) == €0™(J)

P l lﬁ
ROM(f2) —*— ROM(JP),
where p(u) = 4. Since 4. is bijective, the Reidemeister n-orbit classes
{(@s o p) (F}n)) | b€ &} in ROM™ (@) are all different. Also, we have a
commutative diagram

ROM(f) ——s ROM(f2)

. -
ROM(f2) —F— ROM(FE).
Then |p;1(ﬁ(F}n)))| = |p71((ty o ﬁ)(F}")))I for every b € £&. Thus we
know that {(0 o ip4)(RO™ (¢)) | b € ¢} are all different. This means
ROM(f, fe.) = RO™(f, ). The first assertion follows from the defini-
tion of RO (f; E, Fe,).
On the other hand, Theorem 3.5 tells us
EO"™(g; E, Fg,) = RO™(g; E, F,),

then the first equality of the second assertion holds. Since my(B) is
trivial, from [10, Theorem 2.4] we have

EO™(f) =Y  EO™(gfk),
b; €¢
and E and Fjy are Jiang-type spaces, thus we have the last equality. O
For the torus map f, the conditions of the first assertion of Theorem
4.5 are always satisfied, then we have

COROLLARY 4.6. Suppose p: E — B is fibration over a torus. Then
for any fibre preserving map f : E — FE, we have

RO®™)(f; E, Fg,) = RO™(f).
Under the same Jiang-type conditions, we have

EO(”)(f;E,an) = ROW(f) = Z Ro(mi)(fbdii)'
b;eg
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PROOF. See (10, 2.6]. O

On the Klein bottle, Corollary 4.6 can be applied to establish the
following example (cf. [5, Example 4.1]). Also it improves the example
5.3 in [2]. We omit the details.

EXAMPLE 4.7. (The Klein bottle). Represent the Klein bottle K?
as the quotient R?/G, where G is the group of automorphisms on R?
generated by a: (z,y) — (z,y+ 1) and 8 : (z,y) — (—z,2y).

The map (z,y) — (—z,2y) on R? induces a well-defined self map f
of K?. This f is fibre preserving with respect to the fibration S —
K? 2 81 where p is induced by the projection on the first factor. Note
that f induces a standard map f of degree —1 on the base, and so f3
has exactly N(f3) = 2 fixed points bo, b;. This two 3-orbit classes have
the same length 1. Since (fs,)? is of degree 8 and (f;,)3 is of degree
-8, it follows from Corollary 4.6 that RO®)(f; K2, F¢,) = ROG(f) =
> ROB)(fy,) = 10.

Although K? is not a Jiang-type space, in this example, we have

ROW(f; K, Fy,) = ROV(f) = EOP(f).

References

{1] R. F. Brown, The Lefschetz Fized Point Theorem, Scott, Foresman and Co.,
Glenview, IL, 1971.

[2] F. Cardona and P. Wong, On the computation of the relative Nielsen number,
Topology Appl. 116 (2001), 29-41.

, The relative Reidemeister numbers of fiber map pairs, Topological Meth-
ods in Nonlinear Analysis Journal of the Juliusz Schauder Center 21 (2003),
131-145.

[4] P. R. Heath, A Nielsen type number for fibre preserving maps, Topology and
Appl. 53 (1993), 19-35.

[5] P. R. Heath and E. C. Keppelmann, Fibre techniques in Nielsen periodic point
theory on nil and solvmanifolds II, Topology and Appl. 106 (2000), 149-167.

[6] P. R. Heath, R. Piccinini and C. You, Nielsen-type numbers for periodic points
1, in: Topological Fixed Point Theory and Applications, Proceedings, (Tianjin
1988), B. Jiang (ed.), Lecture Notes in Math. 1411, Springer, Berlin 1989, 88—
106. i

3]

(7]
(8]

, Nielsen type numbers for periodic points on nonconnected spaces, Topol-

ogy Appl. 63 (1995), 97-116.

, Nielsen type numbers for periodic points on pairs of spaces, Topolog
Appl. 63 (1995), 117-138. ‘

[9] B. Jiang, Lectures on Nielsen Fized Point Theory, Contemporary Mathematics
14 (AMS, Providence, RI 1983).




A relative Reidemeister orbit number 209

[10] B. Jiang, S. H. Lee and M. H. Woo, Reidemeister orbit sets, Fund. Math. 183
(2004), 139-156. .

[11] H. Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986), 459-473.

[12] E. Spanier, Algebraic Topology, McGraw-Hill, New York 1966.

[13] P. Wong, Fized point theory for homogeneous spaces, Amer. J. Math. 120 (1998),
23-42.

[14] C. You, Fized Point Classes of a Fibre Map, Pacific J. Math. 100 (1992), no. 1,
217-241.

[15] X. Zhao, A relative Nielsen number for the complement, in: Topological Fixed
Point Theory and Applications, Proceedings, (Tianjin 1988), B. Jiang (ed.),
Lecture Notes in Math. 1411, Springer, Berlin 1989, 189-199.

Seoung Ho Lee

Mokwon University

Daejeon 302-729, Korea

E-mail: seoungho@mokwon.ac.kr

Yeon Soo Yoon

Hannam University

Daejeon 306-791, Korea

E-mail: yoon@mail.hannam.ac.kr



