• Title/Summary/Keyword: Nicotiana

Search Result 533, Processing Time 0.029 seconds

Lucerne transient streak virus; a Recently Detected Virus Infecting Alfafa (Medicago sativa) in Central Saudi Arabia

  • Raza, Ahmed;Al-Shahwan, Ibrahim M.;Abdalla, Omer A.;Al-Saleh, Mohammed A.;Amer, Mahmoud A.
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • A survey was conducted to determine the status of Lucerne transient streak virus (LTSV) in three high-yielding alfalfa regions in central Saudi Arabia (Riyadh, Qassim, and Hail) during 2014. Three hundred and eight symptomatic alfalfa, and seven Sonchus oleraceus samples were collected. DAS-ELISA indicated that 59 of these samples were positive to LTSV. Two isolates of LTSV from each region were selected for molecular studies. RT-PCR confirmed the presence of LTSV in the selected samples using a specific primer pair. Percentage identity and homology tree comparisons revealed that all Saudi isolates were more closely related to each other but also closely related to the Canadian isolate-JQ782213 (97.1-97.6%) and the New Zealand isolate-U31286 (95.8-97.1%). Comparing Saudi isolates of LTSV with ten other sobemoviruses based on the coat protein gene sequences confirmed the distant relationship between them. Eleven out of fourteen plant species used in host range study were positive to LTSV. This is the first time to document that Trifolium alexandrinum, Nicotiana occidentalis, Chenopodium glaucum, and Lathyrus sativus are new host plant species for LTSV and that N. occidentalis being a good propagative host for it.

Transgenic tobacco with γ-TMT of perilla showed increased salt resistance and altered pigment synthesis (들깨 γ-TMT 형질전환 담배의 색소성분 변화 및 염 스트레스 내성 증가)

  • Woo, Hee-Jong;Sung, Jwa-Kyung;Kim, Jung-Bong;Kim, Na-Young;Lee, Si-Myung;Shin, Kong-Sik;Lim, Sun-Hyung;Suh, Seok-Cheol;Kim, Kyung-Hwan;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.329-335
    • /
    • 2008
  • Tocopherols are essential lipophilic antioxidant in human cells, while little is known about its function in plant tissues. To study the impact of composition and content of tocopherols on stress tolerance, tobacco (Nicotiana tabacum) was transformed with a construct containing a cDNA insert encoding $\gamma$-tocopherol methyltransferase ($\gamma$-TMT/VTE4) from perilla under the control of the cauliflower mosaic virus (CaMV) 35S promoter. The transgenic tobacco was confirmed by PCR and RT-PCR. The total content and composition of tocopherols in the transgenic lines were similar with wild type controls. However, chlorophyll-a and carotenoid content in the transgenic lines were increased by up to 45% (P<0.01) and 39% (P<0.02), respectively. Also, the over-expression of $\gamma$-TMT increased the salt stress tolerance in tobacco plants. These results demonstrate that over-expression of $\gamma$-TMT gene in tocopherol bio-synthetic pathway can increase salt stress tolerance and contents of chlorophyll-a and carotenoid in transgenic tobacco plants.

Screening Procedure of Tobacco Cultivars for Resistant to Bacterial Wilt Caused by Ralstonia solanacearum (담배세균성마름병[립고병(立枯病)]에 대한 담배품종의 저항성 검정법)

  • Jeon, Yong-Ho;Kang, Yue-Gyu
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Bacterial wilt caused by Ralstonia solanacearum has become a severe problem on tobacco in Korea. No effective single control measure is available at present time. One of the most potential way for controlling the bacterial wilt on tobacco is growing tobacco cultivars resistant to the bacterial wilt. In this study, optimal conditions for screening tobacco cultivars resistant to the bacterial wilt were examined to provide reproducible and efficient methods in growth chamber testing and field experiments for evaluating plant disease resistance. For this, already-known inoculation methods, inoculum densities, and incubation temperature, and plant growth stages at the time of inoculation were compared using tobacco cultivars resistant (Nicotiana tabacum cv, NC95), moderately resistant (N. tabacum cv. SPG70), and susceptible (N. tabacum BY4) to the bacterial disease. It was determined that root-dipping of tobacco seedlings at six true leaf stage into the bacterial suspension with inoculum level of $10^8$ colony-forming units (CFU)/ml for 20 min before transplanting was simple and most efficient in testing for resistance to the bacterial wilt of tobacco caused by R. solanacearum, for which disease incidences and severities were examined at 2 weeks of plant growth after inoculation at $20{\sim}25^{\circ}C$ in a growth chamber. These experimental conditions could discriminate one tobacco cultivar from the others by disease severity better than any other experimental conditions. In field testing, the optimum time for examining the disease occurrence was late June through early July. These results can be applied to establishing a technical manual for the screening of resistant tobacco cultivars against the bacterial wilt caused by R. solanacearum.

The coat protein of Turnip crinkle virus is required a full-length to maintain suppressing activity to RNA silencing but no relation with eliciting resistance by N-terminal region in Arabidopsis.

  • Park, Chang-Won;Feng Qu;Tao Ren;T. Jack Morris
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.76.1-76
    • /
    • 2003
  • The coat protein (CP) of Turnip crinkle virus (TCV) is organized into 3 distinct domains, R domain (RNA-binding) connected by an arm, 5 domain and P domain. We have previously shown that the CP of TCV strongly suppresses RNA silencing, and have mapped N-terminal R domain of which is also the elicitor of resistance response in the Arabidopsis ecotype Di-17 carrying the HRT resistance gene. In order to map the region in the TCV CP that is responsible for silencing suppression, a series of CP mutants were constructed, transformed into Agrobacterium, coinfiltrated either with HC-Pro (the helper component proteinase of tobacco etch potyvirus) known as a suppressor of PTGS or GFP constructs into leaves of Nicotiana benthmiana expressing GFP transgenically. In the presence of HC-Pro, all CP mutants were well protected, accumulating mutant CP mRNAs and their proteins even 5 days post-infiltration (DPI). In the presence of GFP, some mutant constructs which showed the accumulation of CP mutants and GFP mRNAs at early stage but eventually degraded at 5 DPI. Only a mutant which carrying 4 amino acid deletion of R domain was tolerable to maintain suppressing activity, suggesting that the suppressing activity is not directly related with the eliciting activity. A transient assay also revealed that the mutants synthesized their proteins, suggesting that a full length of CP sequences and its intact structure are required to stabilize CP, which suppresses the RNA silencing.

  • PDF

Identification of Alfalfa Mosaic Virus from Soybean (대두에서 발생한 알파파 모자이크 바이러스의 분류동정에 관한 연구)

  • Lee S. H.;Choi Y. M.;Kim J. S.;Chung B. J.
    • Korean Journal Plant Pathology
    • /
    • v.1 no.1
    • /
    • pp.33-37
    • /
    • 1985
  • A yellow stripe and bud benting disease of soybean was commonly observed on the field at Suweon area. The causal agent was identified as alfalfa mosaic virus (AMV) by indicator plant reactions, physical properties, serological test and electron microscopy. AMV produced vein clearing, top necrosis, top bent and mottling on the parts of soybean plants. Local lesions were produced on the inoculated leaves of Vigna sesquipedialis, Vicia faba and Tetragonia expansa, while Chenopodium am, anticolor, C. quinoa, Pisum satvium, Petunia hybrida and Nicotiana tabacum 'Bright yellow' were systemically infected. The thermal inactivation point was $60^{\circ}C$, dilution end point was $10^{-3}$, and longevity in vitro was 2 days at room temperature. AMV from soybean was reacted with AMV - antiserum in agar gel diffusion test. Electron microscopy of AMV from soybean exhibited bacilliform particles of 60nm in length.

  • PDF

Overexpression of Rice Chloroplast Small Heat Shock Protein Increases Thermotolerance in Transgenic Plants (벼 엽록체 small HSP의 과발현에 의한 형질전환 식물체의 내열성 증가)

  • 원성혜;조진기;이병헌
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 2003
  • To investigate the function of chloroplast small heat shock protein (HSP), transgenic tobacco plants (Nicotiana tabacum L, cv. SR-1) that constitutively overexpress the rice chloroplast small HSP (Oshsp26) were generated. Effects of constitutive expression of the Oshsp26 on thermotolerance were investigated with the chlorophyll fluorescence. After 5-min incubation of leaf discs at high temperatures, an increase in the Fo level, indication of separation of LHCII from PSII, was mitigated by constitutive expression of the chloroplast small HSP When tobacco plantlets grown in Petri dishes were incubated at $20^{\circ}C$/TEX> for 45 min and subsequently incubated at $20^{\circ}C$/TEX> leaf color of wild-type plant became gradually white and all plantlets were finally died. Under the conditions in which all the wild-type plants died, more than 80% of the transformants remained green and survived. It was also found that the levels of Oshsp26 protein accumulated in transgenic plants were correlated with the degree of thermotolerance. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery, as a results, increases thermotolerance of whole plant during heat stress.

Bean Yellow Mosaic Virus and Cucumber Mosaic Virus Causing Mosaic Disease on Gladiolus in Korea (그라디오러스에 발생하는 BYMV와 CMV에 관한 연구)

  • Lee S.H.;Kim J.S.;Choi Y.M.
    • Korean journal of applied entomology
    • /
    • v.22 no.3 s.56
    • /
    • pp.198-202
    • /
    • 1983
  • A mosaic disease of gladiolus has been commonly observed with an infection rate of $43.3\%$ in the field. Bean Yellow Mosaic Virus(BYMV) produced veinal spreading lesions on Cheonopodium amaranticolor, veinal necrosis and severe leaf distortion on Phaseolus vulgaris 'Scotia' and mosaic on Vi cia faba. Cucumber Mosaic Virus(CMV) produced local lesions on C. amaranticolor, mosaic symptoms on Nicotiana glutinosa and Cucumis sativus. BYMV and CMV were transmitted by the green peach aphid. Purified BYMV and CMV had a typical maximum absorption at 260nm. In agar gel diffusion test, BYMV and CMV gave positive reaction with their homologous antiserum. The size of BYMV was 750nm in length, and CMV was 30nm in diameter.

  • PDF

Acibenzolar-S-Methyl(ASM)-Induced Resistance against Tobamoviruses Involves Induction of RNA-Dependent RNA Polymerase(RdRp) and Alternative Oxidase(AOX) Genes

  • Madhusudhan, Kallahally Nagendra;Deepak, Saligrama Adavigowda;Prakash, Harishchandra Sripathi;Agrawal, Ganesh Kumar;Jwa, Nam-Soo;Rakwal, Randeep
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • Tobamoviruses are the major viral pathogens of tomato and bell pepper. The preliminary results showed that Acibenzolar-Smethyl(ASM; S-methylbenzo(1,2,3) thiadiazole-7-carbothiate) pre-treatment to tomato and tobacco plants reduces the concentration of Tomato mosaic tobamovirus(ToMV) and Tobacco mosaic tobamovirus(TMV) in tomato and bell pepper seedlings, respectively. Pre-treatment of the indicator plant(Nicotiana glutinosa) with the ASM followed by challenge inoculation with tobamoviruses produced a reduced number and size of local lesions(67 and 79% protection over control to TMV and ToMV inoculation, respectively). In order to understand the mechanism of resistance the gene expression profiles of antiviral genes was examined. RT-PCR products showed higher expression of two viral resistance genes viz., alternative oxidase(AOX) and RNA dependent RNA polymerase(RdRp) in the upper leaves of the ASM-treated tomato plants challenge inoculation with ToMV. Further, the viral concentration was also quantified in the upper leaves by reverse transcription PCR using specific primer for movement protein of ToMV, as well as ELISA by using antisera against tobamoviruses. The results provided additional evidence that ASM pre-treatment reduced the viral movement to upper leaves. The results suggest that expressions of viral resistance genes in the host are the key component in the resistance against ToMV in the inducer-treated tomato plants.

  • PDF

Dopamine determination using a biosensor based on multiwall carbon nanotubes paste and burley tobacco-peroxidase (담배 잎-peroxidase와 다중벽 탄소 나노튜브를 이용한 dopamine의 정량)

  • Kwon, Hyoshik;Jeon, Byong-Suk;Pak, Yongnam
    • Analytical Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.98-105
    • /
    • 2015
  • The development of an enzymatic biosensor for dopamine determination based on multiwall carbon nanotubes (MWCNTs) and peroxidase obtained from the crude extract of burley tobacco (Nicotiana tabacum L.) was proposed. Peroxidase catalyzes the oxidation of dopamine to dopamine quinone. The influence on the response of analytical parameters of biosensors such as enzyme concentration, dopamine concentration, pH, and phosphate buffer solution concentration were investigated. The analytical parameters obtained, including sensitivity, linearity, and stability, were investigated. The proposed method for dopamine determination presented good selectivity even in the presence of uric acid and ascorbic acid. The sensor presented a higher response for dopamine in 0.010 M phosphate buffer at pH 6.50, with an applied potential of -0.15 V. The detection limit of the electrode was 2.7×10−6 M (S/N = 3) and the relative standard deviation of the measurements, which were repeated 10 times using 5.0×10−2 M dopamine, was 1.3%.

Investigation of Agrobacterium-mediated Transient dsRNA Expression in Tobacco

  • Choi, Wonkyun;Lim, HyeSong;Seo, Hankyu;Kim, Dong Wook
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.4
    • /
    • pp.394-402
    • /
    • 2019
  • The Agrobacterium tumefaciens mediated gene transfer is widely used to generate genetic transformation of plants and transient assay of temporal exogenous gene expression. Syringe infiltration system into tobacco (Nicotiana benthamiana) leaves is a powerful tool for transient expression of target protein to study protein localization, protein-protein binding and protein production. However, the protocol and technical information of transient gene expression, especially double strand RNA (dsRNA), in tobacco using Agrobacterium is not well known. Recently, dsRNA is crucial for insecticidal effect on destructive agronomic pest such as Corn rootworm. In this study, we investigated the factor influencing the dsRNA expression efficiency of syringe agro-infiltration in tobacco. To search the best combination for dsRNA transient expression in tobacco, applied two Agrobacterium cell lines and three plant vector systems. The efficiency of dsRNA expression has estimated by real-time PCR and digital PCR. As a result, pHellsgate12 vector constructs showed the most effective accumulation of dsRNA in the cell. These results indicated that the efficiency of dsRNA expression was depending on the kind of vector rather than Agrobacterium cells. In summary, the optimized combination of transient dsRNA expression system in tobacco might be useful to in vivo dsRNA expression for functional study and risk assessment of dsRNA.