DOI QR코드

DOI QR Code

Investigation of Agrobacterium-mediated Transient dsRNA Expression in Tobacco

  • Choi, Wonkyun (Division of Ecological Safety Research, Bureau of Survey Safety Research, National Institute of Ecology (NIE)) ;
  • Lim, HyeSong (Division of Ecological Safety Research, Bureau of Survey Safety Research, National Institute of Ecology (NIE)) ;
  • Seo, Hankyu (Bio-Medical Science Co., Ltd) ;
  • Kim, Dong Wook (Division of Ecological Safety Research, Bureau of Survey Safety Research, National Institute of Ecology (NIE))
  • 투고 : 2019.11.26
  • 심사 : 2019.12.02
  • 발행 : 2019.12.31

초록

The Agrobacterium tumefaciens mediated gene transfer is widely used to generate genetic transformation of plants and transient assay of temporal exogenous gene expression. Syringe infiltration system into tobacco (Nicotiana benthamiana) leaves is a powerful tool for transient expression of target protein to study protein localization, protein-protein binding and protein production. However, the protocol and technical information of transient gene expression, especially double strand RNA (dsRNA), in tobacco using Agrobacterium is not well known. Recently, dsRNA is crucial for insecticidal effect on destructive agronomic pest such as Corn rootworm. In this study, we investigated the factor influencing the dsRNA expression efficiency of syringe agro-infiltration in tobacco. To search the best combination for dsRNA transient expression in tobacco, applied two Agrobacterium cell lines and three plant vector systems. The efficiency of dsRNA expression has estimated by real-time PCR and digital PCR. As a result, pHellsgate12 vector constructs showed the most effective accumulation of dsRNA in the cell. These results indicated that the efficiency of dsRNA expression was depending on the kind of vector rather than Agrobacterium cells. In summary, the optimized combination of transient dsRNA expression system in tobacco might be useful to in vivo dsRNA expression for functional study and risk assessment of dsRNA.

키워드

참고문헌

  1. Bachman, P.M., R. Bolognesi, W.J. Moar, G.M. Mueller, M.S. Paradise, P. Ramaseshadri, J. Tan, J.P. Uffman, J.A. Warren, B.E. Wiggins and S.L. Levine. 2013. Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte). Transgenic Research 22: 1207-1222. https://doi.org/10.1007/s11248-013-9716-5
  2. Bakhsh, A., E. Anayol and S.F. Ozcan. 2017. Comparison of transformation efficiency of five Agrobacterium tumefaciens strains in Nicotiana Tabacum L. Emirates Journal of Food and Agriculture 26(3): 259-264. https://doi.org/10.9755/ejfa.v26i3.16437
  3. Barea, J.S., J. Lee and D.K. Kang. 2019. Recent advances in Droplet-based Microfluidic Technologies for Biochemistry and Molecular Biology. Micromachines 10(6): 412. https://doi.org/10.3390/mi10060412
  4. Baronti, L., M. Karlsson, M. Marusic and K. Petzold. 2018. A guide to large-scale RNA sample preparation. Analytical and Bioanalytical Chemistry 410(14): 3239-3252. https://doi.org/10.1007/s00216-018-0943-8
  5. Barshandy, H., S. Jalkanen and T.H. Teeri. 2015. Within leaf variation is the largest source of variation in agroinfiltration of Nicotianabenthamiana. Plant Methods 11: 47. https://doi.org/10.1186/s13007-015-0091-5
  6. Baum, J.A., T. Bogaert, W. Clinton, G.R. Heck, P. Feldmann, O. Ilagan, S. Johnson, G. Plaetinck, T. Munyikwa, M. Pleau, T. Vaughn and J. Roberts. 2007. Control of coleopteran insect pests through RNA interference. Nature Biotechnology 25: 1322-1326. https://doi.org/10.1038/nbt1359
  7. Bond, J.E. and M.L. Roose. 1998. Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel oranfe. Plant Cell Reports 18: 229-234. https://doi.org/10.1007/s002990050562
  8. Cazzonelli, C.I. and J. Velten. 2006. An in vivo, luciferase-based, Agrobacterium-infiltration assay system: Implications for post-transcriptional gene silencing. Planta 224: 582-597. https://doi.org/10.1007/s00425-006-0250-z
  9. Chen, Q., H. Lia, J. Hurtado, J. Stahnke, K. Leuzinger and M. Dent. 2014. Agroinfiltration as an Effective and Scalable Strategy of Gene Delivery for Production of Pharmaceutical Proteins. Advanced Techniques in Biology & Medicine 1(1): 103.
  10. Choi, W., H.S. Lim, J. Kim, S.M. Ryu and J.R. Lee. 2018. Application of simple and massive purification system of dsRNA in vivo for acute toxicity to Daphnia magna. Entomological Research 48: 533-539. https://doi.org/10.1111/1748-5967.12328
  11. Collier, R., K. Dasqupta, Y.P. Xing, B.T. Hernandez, M. Shao, D. Rohozinski, E. Kovak, J. Lin, M.L.P. de Oliveira, E. Stover, K.F. McCue, F.G. Harmon, A. Blechi, J.G. Thomson and R. Thilmony. 2017. Accurate measurement of transgene copy number in crop plants using droplet digital PCR. Plant Journal 90: 1014-1025. https://doi.org/10.1111/tpj.13517
  12. Demeke, T. and D. Dobnik. 2018a. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Analytical and Bioanalytical Chemistry 410(17): 4039-4050. https://doi.org/10.1007/s00216-018-1010-1
  13. Demeke, T. and M. Eng. 2018b. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events. Biomolecular Detection Quantification 15: 24-29. https://doi.org/10.1016/j.bdq.2018.03.002
  14. Deshui, L., S. Lindan, H. Chenggui, Y. Jialin, L. Dawei and Z. Yongliang. 2012. Validation of reference genes for expression studies in virus-infected Nicotianabenthamiana using quantitative real-time PCR. PLoS One 7(9): 1-14.
  15. Dugdale, B., C.L. Mortimer, M. Kato, T. James, R.M. Harding and J.L. Dale. 2014. Design and construction of an in-plant activation cassette for transgene expression and recombinant protein production in plants. Nature Protocols 9: 1010-1027. https://doi.org/10.1038/nprot.2014.068
  16. Escobar, M.A. and A.M. Dandekar. 2003. Agrobacterium tumefaciens as an agent of disease. Trends in Plant Science 8(8): 380-386. https://doi.org/10.1016/S1360-1385(03)00162-6
  17. Fire, A., S.Q. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver and C.C. Mello. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811. https://doi.org/10.1038/35888
  18. Gelvin, S.B. and L.L. Habeck. 1990. vir genes influence conjugal transfer of the Yi plasmid of Agrobacterium tumefaciens. Journal of Bacteriology 172(3): 1600-1608. https://doi.org/10.1128/JB.172.3.1600-1608.1990
  19. Grimsley, N., B. Hohn, T. Hohn and R. Walden. 1986. "Agroinfection", an alternative route for viral infection of plants by suing the Ti plasmid. Proceedings of the National Academy of Sciences of the United States of America 83: 3282-3286. https://doi.org/10.1073/pnas.83.10.3282
  20. Jia, H., M. Liao, J.-P. Verbelen and K. Vissenberg. 2007. Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs. Plant Cell Reports 26: 1961-1965. https://doi.org/10.1007/s00299-007-0403-y
  21. Joensuu, J.J., A.J. Conley, M. Lienemann, J.E. Brandle, M.B. Linder and R. Menassa. 2010. Hydrophobin fusions for high-level transient protein expression and purification in Nicotianabenthamiana. Plant Physiology 152: 622-633. https://doi.org/10.1104/pp.109.149021
  22. Johansen, L.K. and J.C. Carrington. 2001 Silencing on the spot Induction and suppression of RNA silencing in the Agrobacterium mediated transient expression system. Plant Physiology 126: 930-938. https://doi.org/10.1104/pp.126.3.930
  23. Jones, G.M., E. Busby, J.A. Garson, P.R. Grant, E. Nastouli, A.S. Devonshire and A.S. Whale. 2016. Digital PCR dynamic range is approaching that of real-time quantitative PCR. Biomolecular Detection and Quantification 10: 31-33. https://doi.org/10.1016/j.bdq.2016.10.001
  24. Kumar, P., S. SPandit and I.T. Baldwin. 2012. Tobacco Rattle Virus Vector: A Rapid and Transient Means of Silencing Manducasexta Genes by Plant Mediated RNA Interference. PLoS One 7(2): e31347. doi:10.1371/journal.pone.0031347
  25. Morley, A.A. 2014. Digital PCR: A brief history. Biomolecular Detection and Quantification 1: 1-2. https://doi.org/10.1016/j.bdq.2014.06.001
  26. Nausch, H., H. Mikschofsky, R. Koslowski, U. Meyer, I. Broer and J. Huckauf. 2012. High-Level Transient Expression of ER-Targeted Human Interleukin 6 in Nicotianabenthamiana. PLoS One 7(11): e48938. doi:10.1371/journal.pone.0048938
  27. Niehl, A., M. Soininen, M.M. Poranen and M. Heinlein. 2018. Synthetic biology approach for plant protection using dsRNA. Plant Biotechnology Journal 16: 1679-1687 https://doi.org/10.1111/pbi.12904
  28. Okano, Y., H. Senshu, M. Hashimoto, Y. Neriya, O. Netsu, N. Minato, T. Yoshida, K. Maejima, K. Oshima, K. Komatsu, Y. Yamaji and S. Namba. 2014. In Planta Recognition of a Double-Stranded RNA Synthesis Protein Complex by a Potexviral RNA Silencing Suppressor. Plant Cell 26: 2168- 2183. https://doi.org/10.1105/tpc.113.120535
  29. Palanichelvam, K., A.B. Cole, M. Shababi and J.E. Schoelz. 2000. Agroinfiltration of Cauliflower mosaic virus Gene VI elicits hypersensitive response in Nicotiana species. Molecular Plant Microbe Interactions 13(11): 1275-1279. https://doi.org/10.1094/MPMI.2000.13.11.1275
  30. Pavšič, J., J. Zel and M. Milavec. 2016. Assessment of the real-time PCR and different digital PCR platforms for DNA quantification. Analytical and Bioanalytical Chemistry 408: 107-121. doi:10.1007/s00216-015-9107-2
  31. Pruss, G.J., E.W. Nester and V. Vance. 2008. Infiltration with Agrobacterium tumefaciens induces host defense and development-dependent responses in the infiltrated zone. Molecular Plant Microbe Interactions 21(12): 1528-1538. https://doi.org/10.1094/MPMI-21-12-1528
  32. Ricchi, M., C. Bertasio, M.B. Boniotti, N. Vicari, S. Russo, M. Tilola, M.A. Bellotti and B. Bertasi. 2017. Comparison among the Quantification of Bacterial Pathogens by qPCR, dPCR, and Cultural Methods. Frontiers in Microbiology 8: 1174. doi:10.3389/fmicb.2017.01174
  33. Santi, L., L. Batchelor, Z. Huang, B. Hjelm, J. Kilbourne, C.J. Arntzen, Q. Chen and H.S. Mason. 2008. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine 26: 1846-1854. https://doi.org/10.1016/j.vaccine.2008.01.053
  34. Santos-Rosa, M., A. Poutaraud, D. Merdinoglu and P. Mestre. 2008. Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Reports 27: 1053-1063. https://doi.org/10.1007/s00299-008-0531-z
  35. Schmidt, G.W. and S.K. Delaney. 2010. Stable internal referencegenes for normalization of real-time RT-PCR in tobacco (Nicotianatabacum) during development and abiotic stress. Molecular Genetics and Genomics 283: 233-241. https://doi.org/10.1007/s00438-010-0511-1
  36. Seol, E., Y. Jung, J. Lee, C. Cho, T. Kim, Y. Rhee and S. Lee. 2008. In planta transformation of Notocactus scopa cv. Soonjung by Agrobacterium tumefaciens. Plant Cell Reports 27: 1197-1206. https://doi.org/10.1007/s00299-008-0540-y
  37. Shah, K.H., B. Almaghrabi and H. Bohlmann. 2013. Comparison of Expression Vectors for Transient Expression of Recombinant proteins in Plants. Plant Molecular Biology Reporter 31: 1529-1538. https://doi.org/10.1007/s11105-013-0614-z
  38. Sparkes, I., J. Runions, A. Kearns and C. Hawes. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols 1: 2019-2025. https://doi.org/10.1038/nprot.2006.286
  39. Sun, Y. and P.A. Joyce. 2017. Application of droplet digital PCR to determine copy number of endogenous genes and transgenes in sugarcane. Plant Cell Reports 36: 1775-1783. https://doi.org/10.1007/s00299-017-2193-1
  40. Taylor, S.C., G. Laperriere and H. Germain. 2017. Droplet digital PCR versus qPCR for gene expression analysis with low abund ant targets: from variable nonsense to publication quality data. Scientific Reports 7: 2409. https://doi.org/10.1038/s41598-017-02217-x
  41. Worrall, E.A., A. Bravo-Cazar, A.T. Nilon, S.J. Fletcher, K.E. Robinson, J.P. Carr and N. Mitter. 2019. Exogenous Application of RNAi-Inducing Double-Stranded RNA Inhibits Aphid-Mediated Transmission of a Plant Virus. Frontiers in Plant Science 10: 265. doi:10.3389/fpls.2019.00265
  42. Wroblewski, T., A. Tomczak and R. Michelmore. 2005. Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal 3: 259-273. https://doi.org/10.1111/j.1467-7652.2005.00123.x
  43. Wu, S.L., X.B. Yang, L.Q. Liu, T. Jiang, H. Wu, C. Su, Y.H. Qian and F. Jiao. 2015. Agrobacterium-mediated transient MaFT expression in mulberry (Morus alba L.) leaves. Bioscience Biotechnology and Biochemistry 79(8): 1266-1271. https://doi.org/10.1080/09168451.2015.1025691
  44. Wydro, M., E. Kozubek and P. Lehmann. 2006. Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotianabenthamiana. Acta Biochimica Polonica 53(2): 289-298. https://doi.org/10.18388/abp.2006_3341
  45. Yang, Y., R. Li and M. Qi. 2000. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant Journal 22: 543-551. https://doi.org/10.1046/j.1365-313x.2000.00760.x
  46. Zhao, H., Z. Tan, X. Wen and Y. Wang. 2017. An improved Syringe Agroinfiltration Protocol to Enhance Transformation Efficiency by Combinative Use of 5-Azacytidine, Ascorbate Acid and Tween-20. Plants 6(1): 9. https://doi.org/10.3390/plants6010009
  47. Zmienko, A., A. Samelak-Czajka, M. Goralski, E. Sobieszczuk-Nowicka, P. Kozlowski and M. Figlerowicz. 2015. Selection of Reference Genes for qPCR- and ddPCR-Based Analyses of Gene Expression in Senescing Barley Leaves. PLoS One 10: e0118226. doi:10.1371/journal.pone.0118226