Browse > Article
http://dx.doi.org/10.5806/AST.2015.28.2.98

Dopamine determination using a biosensor based on multiwall carbon nanotubes paste and burley tobacco-peroxidase  

Kwon, Hyoshik (Department of Chemistry Education, Chungbuk National University)
Jeon, Byong-Suk (Department of Chemistry Education, Chungbuk National University)
Pak, Yongnam (Department of Chemistry Education, Korea National University of Education)
Publication Information
Analytical Science and Technology / v.28, no.2, 2015 , pp. 98-105 More about this Journal
Abstract
The development of an enzymatic biosensor for dopamine determination based on multiwall carbon nanotubes (MWCNTs) and peroxidase obtained from the crude extract of burley tobacco (Nicotiana tabacum L.) was proposed. Peroxidase catalyzes the oxidation of dopamine to dopamine quinone. The influence on the response of analytical parameters of biosensors such as enzyme concentration, dopamine concentration, pH, and phosphate buffer solution concentration were investigated. The analytical parameters obtained, including sensitivity, linearity, and stability, were investigated. The proposed method for dopamine determination presented good selectivity even in the presence of uric acid and ascorbic acid. The sensor presented a higher response for dopamine in 0.010 M phosphate buffer at pH 6.50, with an applied potential of -0.15 V. The detection limit of the electrode was 2.7×10−6 M (S/N = 3) and the relative standard deviation of the measurements, which were repeated 10 times using 5.0×10−2 M dopamine, was 1.3%.
Keywords
burley tobacco biosensor; dopamine; multiwall carbon nanotube;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Wang and M. S. Lin, Electroanalysis, 1, 43 (1989).   DOI
2 H. S. Han, H. K. Lee, J. M. You, H. Jeong and S. Jeon, Sens. Actuators B, 190, 886-895 (2014).   DOI   ScienceOn
3 C. S. Caruso, I. C. Vieira and O. F. Filho, O. Anal. Lett., 32, 39 (1999).   DOI   ScienceOn
4 J. M. Frre and B. L. A. Renard, J. of Theoretical Biology, 101, 387-400 (1983).   DOI
5 G. F. Fuhrmann and B. Vlker, Biomembranes, 1145, 180-182 (1993).   DOI   ScienceOn
6 M. D. P. T. Sotomayor, A. A. Tanaka and A. T. Kubota, J. Electroanal. Chem., 536, 71-81 (2002).   DOI   ScienceOn
7 F. A. S. Ribeiroa, C. R. T. Tarleyb, K. B. Borgesa and A. C. Pereira, Sensors and Actuators B, 185, 743-754 (2013).   DOI   ScienceOn
8 M. Pravda, C. Petit, Y. Michotte, J. M. Kauffmann and K. Vytras, J. Chromatogr. A., 727, 47-52 (1996).   DOI   ScienceOn
9 Y. F. Tu, Z. Q. Fu and H. Y. Chen, Sens. Actuators B., 80, 101 (2001).   DOI   ScienceOn
10 Y. U. Chen, T. C. Tan and T. C. Chemical Engineering Science, 7, 1027 (1996).
11 K. O. Lupetti, L. A. Ramos, I. C. Vieira and O. F. Filho, Il Farmaco, 60, 179-183 (2005).   DOI   ScienceOn
12 Y. Zou, C. Xiang, S. Li-Xian and F. Xu, Biosensors and Bioelectronics, 23(7), 1010-1016 (2008).   DOI   ScienceOn
13 S. Iijima, Nature, 354, 56-58 (1991).   DOI
14 Z. Herrasti, F. Martnez and E. Baldrich, Sens. Actuators B: Chemical, 203, 891-898 (2014).   DOI   ScienceOn
15 P. Xiao, W. Wu, Y. Yu and F. Zhao, International J. of Electrochem. Sci., 2, 149-157 (2007).
16 H. Beitollahi, J. B. Raoof and R. Hosseinzadeh, Electroanalysis, 23, 1934-1940 (2011).   DOI   ScienceOn
17 X. Liu, Y. Peng, X. Qu, S. Ai, R. Han and X. Zhu, J. of Electroanalyt. Chem., 654, 72-78 (2011).   DOI   ScienceOn
18 Q. Zhao, L. Guan, G. Zhennan and Z. Qiankun, Electroanalysis, 17, 85-88 (2005).   DOI   ScienceOn
19 K. Yamamoto, G. Shi, T. Zhou, F. Xu, J. Xu, T. Kato, J.-Y. Jin and L. Jin, Analyst, 128, 249-254 (2003).   DOI   ScienceOn
20 F. A. de Souza Ribeiro, C. R. T. Tarleyb, K. B. B. and A. C. Pereiraa, Sens. Actuators B, 185, 743-754 (2013).   DOI   ScienceOn
21 W. Birkmayer and P. Riederer, Understanding the Neurotransmitters, Springer, New York, 1-79 (1989).
22 G. Stenstrm, B. Sjgren and J. Waldenstrm, Acta Med. Scand., 214, 145-152 (1983).
23 J. S. Sidwell and G. A. Rechnitz, Biotechnol. Lett., 7, 419-425 (1985).   DOI
24 M. P. Connor, J. Sanchez, J. Wang, M. R. Smyth and S. Mannino, Analyst, 114, 1427-1429 (1989).   DOI
25 C. Petit, A. Gonzalez-Cortes and J. M. Kauffmann, Talanta, 42, 1783-1789 (1995).   DOI   ScienceOn
26 T. C. Tan and Y. Chen, Sens. Actuators B., 17, 101-107 (1994).   DOI   ScienceOn
27 J. S. Sidwell and G. A. Rechnitz, Biotechnol. Lett., 7, 419-422 (1985).   DOI
28 M. P. Connor, J. Wang, W. Kubiak and M. R. Smyth, Anal. Chim. Acta, 229, 139-143 (1990).   DOI   ScienceOn
29 F. Mazzei, F.; F. Botre, M. Lanzi, G. Lorenti and F. Porcelli, Sens. Actuators B., 7, 427-430 (1992).   DOI   ScienceOn
30 Y. Chen and T. C. Tan, Sens. Actuators B., 28, 39-48 (1995).   DOI   ScienceOn
31 N. H. Horowitz, M. Fling and G. Horn, Methods in Enzymology, Academic press, New York, Vol. XVIIA, pp 615-620 (1970).
32 F. Ortega and E. Domnguez, J. Biotechnol., 31, 289-300 (1993).   DOI   ScienceOn
33 J. R. Cooper, F. E. Bloom and R. H. Roth, The Biochemical Basis of Neuropharmacology, Oxford University Press, New York, pp. 259-311 (1986).
34 R. A. Kamin and G. A. Wilson, Anal. Chem., 52, 1198 (1980).   DOI
35 C. S. Caruso, I. C. Vieira and O. Fatibello-Filho, Anal. Lett., 32, 39-43 (1999).   DOI   ScienceOn