• Title/Summary/Keyword: Ni-S

Search Result 2,431, Processing Time 0.026 seconds

Formation Temperature Dependence of Thermal Stability of Nickel Silicide with Ni-V Alloy for Nano-scale MOSFETs

  • Tuya, A.;Oh, S.Y.;Yun, J.G.;Kim, Y.J.;Lee, W.J.;Ji, H.H.;Zhang, Y.Y.;Zhong, Z.;Lee, H.D.
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.611-614
    • /
    • 2005
  • In this paper, investigated is the relationship between the formation temperature and the thermal stability of Ni silicide formed with Ni-V (Nickel Vanadium) alloy target. The sheet resistance after the formation of Ni silicide with the Ni-V showed stable characteristic up to RTP temperature of $700\;^{\circ}C$ while degradation of sheet resistance started at that temperature in case of pure-Ni. Moreover, the Ni silicide with Ni-V indicated more thermally stable characteristic after the post-silicidation annealing. It is further found that the thermal robustness of Ni silicide with Ni-V was highly dependent on the formation temperature. With the increased silicidation temperature (around $700\;^{\circ}C$), the more thermally stable Ni silicide was formed than that of low temperature case using the Ni-V.

  • PDF

Thermal Stability Improvement of Ni Germanosilicide using Ni-Pd alloy for Nano-scale CMOS Technology (Nano-scale CMOS에 적용하기 위한 Ni-Germanosilicide에서 Ni-Pd 합금을 이용한 Ni-Germanosilicide의 열안정성 향상)

  • Kim, Yong-Jin;Oh, Soon-Young;Agchbayar, Tuya;Yun, Jang-Gn;Lee, Won-Jae;Ji, Hee-Hwan;Han, Kil-Jin;Cho, Yu-Jung;Kim, Yeong-Cheol;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.31-32
    • /
    • 2005
  • Ge 농도가 30%인 SiGe 위에 Ni-Pd 합금을 이용한 새로운 Ni-Germanosilicide의 방법을 제안하여 열안정성 향상에 대해 연구하였다. 새롭게 제안한 Ni-Pd 합금을 이용하여 3 가지 구조 (Ni-Pd, Ni-Pd/TiN, Ni-Pd/Co/TiN) 중 Cobalt 다층구조를 사용한 구조 (Ni-Pd/Co/TiN)가 면저항이 가장 낮고 안정한 silicide 특성을 갖는 것을 나타냈으며, 고온열처리 $700^{\circ}C$, 30분에서도 낮고 안정한 면저항 특성을 유지시켜 열안정성을 개선하였다.

  • PDF

Quantitative Structure Determination of Ni(111)(2×2)-O/CO: temperature Dependent Study (광전자회절을 이용한 Ni(111)(2×2)-O/CO의 표면 흡착 구조: 시편준비의 온도 의존성)

  • Kang J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.92-97
    • /
    • 2006
  • A study of the adsorption site of CO in the Ni(111)$(2\times2)$-O/CO coadsorbed phase over different sample preparation temperatures revealed that the atop site is favoured. The Ni-C spacing is given by $1.77\pm0.01\;{\AA}$. A study of the adsorption site of Co in the Ni(111)$(2\times2)$-O/CO coadsorbed phase over different sample preparation temperatures revealed that the atop site is favoured. The Ni-C spacing is given by $1.77\pm0.01\;{\AA}$. The data from the sample prepared at 265 K showed atop sites, which is well consistent with vibrational spectroscopy, whilst the data from the low temperature preparation appears the mixture of atop and hop $(35\%)$. The occupation of hop hollow sites is probably due to an incorrect pre-coverage of atomic oxygen (different from 0.25ml). Similar observation of site mixture also found in recent high resolution XPS measurements using C 1s and O 1s chemical shifts.

A STUDY ON COMPARISON OF STAINLESS STEEL, NICKEL-TITANIUM HAND, NICKEL-TITANIUM ENGINE-DRIVEN FILE INSTRUMENTATION USING COMPUTED TOMOGRAPHY (수동형 Stainless Steel, Nickel-Titanium 및 엔진 구동형 Nickel-Titanium File의 근관형성 능력에 관한 비교 연구)

  • Lee, Hwang;Im, Mi-Kyung;Lee, Keon-Il;Lee, Yong-Keun
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.391-400
    • /
    • 1998
  • The aim of this study was to determine the shaping ability of stainless-steel K file (S-S K file), nickel-titanium K file (Ni-Ti K file) and engine driven nickel-titanium file (Quantec file) in resin simulated root canal. Computed tomography was used to evaluate the change of the root canal morphology. Thirty nine resin simulated root canal were divided into four groups (A:12, B:12, C:12, D:3). Resin simulated canals were scanned by computed tomography before instrumentation (1st C-T scan). Canals were instrumented using step back preparation technique with S-S K file in group A and Ni-Ti K file in group B. Group C was prepared with engine driven Ni-Ti file. Group D was uninstrumented to compare the 1st C-T scan images with 2nd C-T scan images of root canal. Instrumented canals were again scanned using computed tomography (2nd C-T scan), and reformated images of the uninstrumented canals were compared with images of the instrumented canals. In the sections of 2mm and 6mm from the apex, Quantec file caused significantly less canal transportation than S-S K file and Ni-Ti K file (p<0.05). Quantec file produced more centered than S-S K file and Ni-Ti K file in the sections of 2mm and 4mm from the apex (p<0.05). There was no significant difference in the removed volume of canals among the each groups (p>0.05). However the removed canal volume from the apex to 5mm were significantly higher than them from 5mm to 1mm (p<0.05) in each groups. Under the conditions of this study, preparation with Quantec file was more effective and produce more appropriate canal shapes than S-S K file and Ni-Ti K file.

  • PDF

A Study on Thermal Stability Improvement in Ni Germanide/p-Ge using Co interlayer for Ge MOSFETs

  • Shin, Geon-Ho;Kim, Jeyoung;Li, Meng;Lee, Jeongchan;Lee, Ga-Won;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.277-282
    • /
    • 2017
  • Nickel germanide (NiGe) is one of the most promising alloy materials for source/drain (S/D) of Ge MOSFETs. However, NiGe has limited thermal stability up to $450^{\circ}C$ which is a challenge for fabrication of Ge MOSFETs. In this paper, a novel method is proposed to improve the thermal stability of NiGe using Co interlayer. As a result, we found that the thermal stability of NiGe was improved from $450^{\circ}C$ to $570^{\circ}C$ by using the proposed Co interlayer. Furthermore, we found that current-voltage (I-V) characteristic was improved a little by using Co/Ni/TiN structure after post-annealing. Therefore, NiGe formed by the proposed Co interlayer that is, Co/Ni/TiN structure, is a promising technology for S/D contact of Ge MOSFETs.

Surface and Electrical Properties of 2 wt% Cr-doped Ni Ultrathin Film Electrode for MLCCs

  • Yim, Haena;Lee, JinJu;Choi, Ji-Won
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.224-227
    • /
    • 2015
  • In this study, 2 wt% Cr-doped Ni thin films were deposited using DC sputtering on a bare Si substrate using a 4 inch target at room temperature. In order to obtain ultrathin films from Cr-doped Ni thin films with high electrical properties and uniform surface, the micro-structure and electrical properties were investigated as a function of deposition time. For all deposition times, the Cr-doped Ni thin films had low average resistivity and small surface roughness. However, the resistivity of the Cr-doped Ni thin films at various ranges showed large differences for deposition times below 90 s. From the results, 120 s is considered as the appropriate deposition time for Cr-doped Ni thin films to obtain the lowest resistivity, a low surface roughness, and a small difference of resistivity. The Cr-doped Ni thin films are prospective materials for microdevices as ultrathin film electrodes.

Electrode Characteristics of the (Mm)Ni5-Based Hydrogen Storage Alloys ((Mm)Ni5계 수소저장합금의 전극 특성)

  • Han, D.S.;Choi, S.J.;Chang, M.H.;Choi, J.;Park, C.N.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 1995
  • The MmNi-based alloy electrode was studied for use as a negative electrode in Ni-MH battery. Alloys with $MmNi_5-_xM_x$(M=Co,Al,Mn) composition were synthesized, and their electrode charateristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in $MmNi_5-_xM_x$ increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is $MmNi_{3.5}Co_{0.7}Al_{0.5}Mn_{0.3}$.

  • PDF

Fabrication of Mg2Ni-Graphite hydrogen absorbing composites materials by M.A. using planetary mill (기계적 합금화법에 의한 Mg2Ni-Graphite 수소저장합금 제조)

  • Hong, Tae Whan;Ha, Won;Kim, Shae Kwang;Kim, Young Jig
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.91-99
    • /
    • 1999
  • Under Hydrogen atmosphere, composites of Mg-Ni-Graphite were prepared by mechanical alloying(M.A.) using planetary mill. Mechanically alloyed powders were analyzed by XRD, SEM and automatic PCT. From the results of XRD, Mg-Ni-Graphite Composites were obtained successfully after 168hrs M.A. By the PCT test, synthesized powders were absorbed 4.9 wt% hydrogen at 623K.

  • PDF

Effect of the Cu Composition Ratio on the Phase Transformation in Low Ni Austenite Cast Iron, Fe-3%C-16%(Ni+Mn+Cu) (Fe-3%C-16%(Ni+Mn+Cu) 주철에서 상변태에 미치는 Cu 조성비의 영향)

  • Park, Gi-Deok;Heo, Hoe-Jun;Na, He-Sung;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.419-425
    • /
    • 2012
  • The purpose of this research was to develop a low Ni austenitic cast iron through replacing Ni by Cu and Mn because they are cheaper than Ni. The effect of the Cu content (6-12 wt%) on the microstructure characteristics was investigated in Fe-3%C-16%(Ni+Cu+Mn) cast iron. Contrary to general effect of the Cu on cast iron, the result of the microstructure analysis indicated that bainite and cementite were formed in high Cu content (>8 wt%Cu). A crystallized Cu-solution (Cu-Mn) phase and MnS in the Cu-solution were formed. The quantity of those phases increased as the Cu content increased. Consequently, the high Cu content in the composition ratio (Ni+Cu+Mn=16%) caused the formation of Cu-Mn/MnS and those phases decreased the effect of Cu and Mn on austenite formation. For this reason, bainite and cementite were formed in high Cu content.

Charateristics of Hydrogen Iodide Decomposition using Ni-Pt Bimetallic Catalyst in Sulfur-Iodine Process (황-요오드 열화학 수소 생산 공정에서 니켈-백금 이원금속 촉매를 이용한 요오드화수소 분해 특성)

  • Kim, Soo-Young;Go, Yoon-Ki;Park, Chu-Sik;Bae, Ki-Kwang;Kim, Young-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This study was performed to develop a low Pt content catalyst as a catalyst for HI decomposition in S-I process. Bimetallic catalysts added various amounts of Pt on a silica supported Ni catalyst were prepared by impregnation method. HI decomposition was carried out using a fixed bed reactor. As a result, Ni-Pt bimetallic catalyst showed enhanced catalytic activity compared with each monometallic catalyst. Deactivation of Ni-Pt catalyst was not observed while deactivation of Ni monometallic catalyst was rapidly occurred in HI decomposition. The HI conversion of Ni-Pt bimetallic catalyst was increased similar to Pt catalyst with increase of the reaction temperature over a temperature range 573K to 773K. From the TG analysis, it was shown that $NiI_2$ remained on the Ni(5.0)-Pt(0.5)/$SiO_2$ catalyst after the HI decomposition reaction was decomposed below 700K. It seems that small amount of Pt in bimetallic catalyst increase the decomposition of $NiI_2$ generated after the decomposition of HI. Consequently, it was considered that the activity of Ni-Pt bimetallic catalyst was kept during the HI decomposition reaction.