DOI QR코드

DOI QR Code

Quantitative Structure Determination of Ni(111)(2×2)-O/CO: temperature Dependent Study

광전자회절을 이용한 Ni(111)(2×2)-O/CO의 표면 흡착 구조: 시편준비의 온도 의존성

  • Kang J.H. (Department of Electro and Nano Physics, Kookmin University)
  • 강지훈 (국민대학교 나노 전자 물리학과)
  • Published : 2006.02.01

Abstract

A study of the adsorption site of CO in the Ni(111)$(2\times2)$-O/CO coadsorbed phase over different sample preparation temperatures revealed that the atop site is favoured. The Ni-C spacing is given by $1.77\pm0.01\;{\AA}$. A study of the adsorption site of Co in the Ni(111)$(2\times2)$-O/CO coadsorbed phase over different sample preparation temperatures revealed that the atop site is favoured. The Ni-C spacing is given by $1.77\pm0.01\;{\AA}$. The data from the sample prepared at 265 K showed atop sites, which is well consistent with vibrational spectroscopy, whilst the data from the low temperature preparation appears the mixture of atop and hop $(35\%)$. The occupation of hop hollow sites is probably due to an incorrect pre-coverage of atomic oxygen (different from 0.25ml). Similar observation of site mixture also found in recent high resolution XPS measurements using C 1s and O 1s chemical shifts.

C 1s에너지 스캔 방식 광전자회절을 이용하여 Ni(111)$(2\times2)$-O/CO에 공동 흡착된 CO의 흡착구조를 시편의 준비 온도에 따라 연구하였다. 실온근방에서 준비한 시편의 경우 표면진동분광결과와 잘 일치하는 결과인 atop 흡착을 얻었으나, 저온시편의 경우 atop흡착 외에 상당량의 CO가 hollow 흡착으로 해석되었다. 일부분의 hollow 흡착 CO는 미리 흡착된 산소의 precoverage가 적거나 없는 곳에 흡착된 곳으로 해석된다. 유사한 결과가 C 1s와 O 1s를 통행 얻은 고 분해능 XPS에서 얻은 흡착위치에서도 확인되었다.

Keywords

References

  1. S. Holloway and J. Norskov, Bonding at surfaces, Liverpool University Press(1991), p10.10
  2. N. Sheppard and N. T. Nguyen, Adv. IR. Raman. Spectrosc. 5, 67(1978)
  3. L. Becker, S. Aminpirooz, B. Hilbert, M. Pedio, D. L. Hasse, and J. Adams, Phy. Rev. B 47, 9710(1993) https://doi.org/10.1103/PhysRevB.47.9710
  4. K.-M. Schindler, Ph. Hofinann, K.-U. Weiss, R. Dippel, V. Fritzsche, A. M. Bradshaw, D. P. Woodruff, M. E. Davila, M. C. Asensio, J. C. Conesa, and A. R. Gonzalez-Elipe, J. Electr. Spectros. Rel. Phenom. 64/65, 75(1993) https://doi.org/10.1016/0368-2048(93)80063-R
  5. M. E. Davila, M. C. Asensio, D. P. Woodruff, K.-M Schindler, Ph. Hofrnann, K.-U. Weiss, R. Dippel, P. Gardner, V. Fritzsche, A. M. Bradshaw, J. C. Conesa, and A. R. Gonzalez-Elipe, Surf. Sci. 311, 337(1994) https://doi.org/10.1016/0039-6028(94)91424-9
  6. G. Blyholder, J. Phys. Chem. 68, 2772(1964) https://doi.org/10.1021/j100792a006
  7. H. Over, H. Blundau, R. Kose, and G. Ertl, Phys. Rev. B 51, 4661 (1995) https://doi.org/10.1103/PhysRevE.51.995
  8. Z. Xu, L. Sumev, K. J. Uram, and J. T. Yates Jr. Surf. Sci. 292, 235(1993) https://doi.org/10.1016/0039-6028(93)90329-I
  9. G. Held, J. Schuler, W. Sklarek, and H.-P. Steinruck, Surf. Sci. 398, 154(1998) https://doi.org/10.1016/S0039-6028(98)80020-4
  10. E. Schimidtke, C. Schwennicke, and H. Pfnur, Surf. Sci. 312, 301 (1994) https://doi.org/10.1016/0039-6028(94)90723-4
  11. D. T. Vu Grimsby, Y. K. Wu, and K. A. R. Mitchell, Surf. Sci. 232, 51(1990) https://doi.org/10.1016/0039-6028(90)90586-W