• Title/Summary/Keyword: Ni-S

Search Result 2,431, Processing Time 0.026 seconds

Electrical Properties of NiO added ZnO (NiO가 첨가된 ZnO의 전기적성질)

  • 전장배;김태원;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.280-283
    • /
    • 1996
  • The electrical inductivity decreases when the content of NiO is used within 1 at% and increases when it's used more than that. Impedance spectrum seems to be one semicircle. The size of semicircle increases when the content of NiO is sued within 1 at% and decreases when it's used mor than that.

  • PDF

Mössbauer Studies on Magnetoresistance in Chalcogenide Fe0.9M0.1Cr2S4 (M=Co, Ni, Zn) (Chalcogenide Fe0.9M0.1Cr2S4(M=Co, Ni, Zn)의 자기저항에 관한 Mössbauer 분광연구)

  • Park, Jae Yun;Lee, Byoung-Seob
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-48
    • /
    • 2013
  • The Jahn-Teller distortion of chalcogenide $Fe_{0.9}M_{0.1}Cr_2S_4$ (M=Co, Ni, Zn) have been investigated by M$\ddot{o}$ssbauer spectroscopy. The crystal structures of $Fe_{0.9}M_{0.1}Cr_2S_4$ (M=Co, Ni, Zn) are cubic spinel at room temperature. Magnetoresistance measurements indicate these system is conducting-semiconducting transistion around $T_C$. Below $T_C$, the asymmetric line broadening is observed and considered to be dynamic Jahn-Teller distortion. Isomer shift value of the samples at room temperature was about 0.5 mm/s, which means that charge state of Fe ions is ferrous in character. The Ni substitutions for Fe occur to increase the Jahn-Teller relaxation. CMR properties could be explained with magnetic polaron due to Jahn-Teller effect, which is different from both the double exchange interactions of manganite system and the triple exchange interactions of chalcogenide $Cu_xFe_{1-x}Cr_2S_4$.

Basic Studies on the Apoptosis Mechanism of Trichoplusia ni Cell Line (Trichoplusia ni 세포의 apoptosis 메커니즘 규명을 위한 기초연구)

  • Lee, Jong-Min;Yang, Jai-Myung;Lee, Youn-Hyung;Chung, In-Sik
    • Applied Biological Chemistry
    • /
    • v.44 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • To elucidate the apoptosis mechanism of Trichoplusia ni cell, fundamental studies for apoptosis induction and suppression were performed. Hygromycin B, a known inducer of apoptosis, started the inhibition of T. ni cell growth at $200\;{\mu}/ml$ concentration. Furthermore, at $400\;{\mu}/ml$ concentration, DNA fragmentation was detected on day 2 of incubation. Although both dexamethasone and sodium butyrate inhibited T. ni cell growth, DNA fragmentation was not detected by both treatments. Also, when apoptosis induced T. ni cells with $200\;{\mu}/ml$ hygromycin B were treated with caspase inhibitor (Ac-DEVD-CHO), the apoptotsis was suppressed by 36%. In addition, N-acetylcysteine, another apoptosis repressor, also inhibited the apoptosis of T. ni cells. In order to express the anti-apoptosis gene (bcl-2), T. ni cells were transiently transformed with bcl-2 and its expression was confirmed by western blot analysis. These results showed the potential of developing new insect cell lines with suppressed apoptosis.

  • PDF

Study of Ni-germano Silicide Thermal Stability for Nano-scale CMOS Technology (Nano-scale CMOS를 위한 Ni-germano Silicide의 열 안정성 연구)

  • Huang, Bin-Feng;Oh, Soon-Young;Yun, Jang-Gn;Kim, Yong-Jin;Ji, Hee-Hwan;Kim, Yong-Goo;Wang, Jin-Suk;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1149-1155
    • /
    • 2004
  • In this paper, novel methods for improvement of thermal stability of Ni-germano Silicide were proposed for nano CMOS applications. It was shown that there happened agglomeration and abnormal oxidation in case of Ni-germano Silicide using Ni only structure. Therefore, 4 kinds of tri-layer structure, such as, Ti/Ni/TiN, Ni/Ti/TiN, Co/Ni/TiN and Ni/Co/TiN were proposed utilizing Co and Ti interlayer to improve thermal stability of Ni-germano Silicide. Ti/Ni/TiN structure showed the best improvement of thermal stability and suppression of abnormal oxidation although all kinds of structures showed improvement of sheet resistance. That is, Ti/Ni/TiN structure showed only 11 ohm/sq. in spite of 600 $^{\circ}C$, 30 min post silicidation annealing while Ni-only structure show 42 ohm/sq. Therefore, Ti/Ni/TiN structure is highly promising for nano-scale CMOS technology.

Preparation and characteristics of modified Ni/YSZ cermet for high temperature electrolysis (고온 수전해 전극용 modified Ni/YSZ cermet 제조 및 전극특성)

  • Chae, Ui-Seok;Park, Geun-Man;Hong, Hyeon-Seon;Choo, Soo-Tae;Yun, Yongseung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.98-107
    • /
    • 2004
  • Modified Ni/YSZ cermets for high temperature electrolysis were synthesized by dry or wet mechanical alloying methods. The Ni/YSZ composit particle was directly fabricated from the ball milling of Ni and YSZ powder or obtained from the reduction of NiO/YSZ particle after the ball milling of NiO and YSZ. In the case of the NiO/YSZ composite particle, the dry milling increased the average particle size whereas the wet milling decreased the size. The dry milling showed that fine YSZ particles were distributed over large Ni surfaces while Ni and YSZ particles similar in size were well mixed in the wet milling method. These features were the same in the Ni/YSZ composite particle prepared from Ni and YSZ powders. The electrical conductivity of the wet-milled Ni/YSZ cermet showed the highest value of $2{\times}10^2S/cm$ among the specimens and this value was increased to $1.4\times10^4S/cm$ after the sintering at $900^\circ{C}$ for 1 h.

Magnetic Domain Walls at the Edges of Patterned NiO/NiFe Bilayers (패턴된 이중박막의 자구벽 특성조사)

  • Hwang, D.G.;Lee, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.176-181
    • /
    • 2003
  • The magnetic domain walls at the edges of a large patterned and exchanged-biased NiO(10-60 nm)/NiFe(10 nm) bilayers and their motions with applied field were investigated by magnetic force microscopy. Three kinds of domain walls, namely, head-to-head zig-zag and tail-to-tail zig-zag Bloch walls and straight Neel walls were found at specific edges of the unidirectional biased NiO(30 nm)/NiFe(10 nm) bilayer having the exchange biasing field (H$\sub$ex/) of 21 Oe. No walls were observed for the strong exchange-biased bilayer (60 nm NiO, H$\sub$ex/ = 75 Oe), while the amplitude of the zig-zag domain increased with decreasing exchange biasing. This may be explained by mutual restraint between H$\sub$ex/ and the demagnetization field of edge. We similarly investigated the magnetization reversal process, the subsequent motion of the walls and identified the pinning and nucleation sites during reversal.

Binder-Free Synthesis of NiCo2S4 Nanowires Grown on Ni Foam as an Efficient Electrocatalyst for Oxygen Evolution Reaction

  • Patil, Komal;Babar, Pravin;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.217-222
    • /
    • 2020
  • The design and fabrication of catalysts with low-cost and high electrocatalytic activity for the oxygen evolution reaction (OER) have remained challenging because of the sluggish kinetics of this reaction. The key to the pursuit of efficient electrocatalysts is to design them with high surface area and more active sites. In this work, we have successfully synthesized a highly stable and active NiCo2S4 nanowire array on a Ni-foam substrate (NiCo2S4 NW/NF) via a two-step hydrothermal synthesis approach. This NiCo2S4 NW/NF exhibits overpotential as low as 275 mV, delivering a current density of 20 mA cm-2 (versus reversible hydrogen electrode) with a low Tafel slope of 89 mV dec-1 and superior long-term stability for 20 h in 1 M KOH electrolyte. The outstanding performance is ascribed to the inherent activity of the binder-free deposited, vertically aligned nanowire structure, which provides a large number of electrochemically active surface sites, accelerating electron transfer, and simultaneously enhancing the diffusion of electrolyte.

The Enhanced Physico-Chemical and Electrochemical Properties for Surface Modified NiO Cathode for Molten Carbonate Fuel Cells (MCFCs)

  • Choi, Hee Seon;Kim, Keon;Yi, Cheol-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1305-1311
    • /
    • 2014
  • The nickel oxide, the most widely used cathode material for the molten carbonate fuel cell (MCFC), has several disadvantages including NiO dissolution, poor mechanical strength, and corrosion phenomena during MCFC operation. The surface modification of NiO with lanthanum maintains the advantages, such as performance and stability, and suppresses the disadvantages of NiO cathode because the modification results in the formation of $LaNiO_3$ phase which has high conductivity, stability, and catalytic activity. As a result, La-modified NiO cathode shows low NiO dissolution, high degree of lithiation, and mechanical strength, and high cell performance and catalytic activity in comparison with the pristine NiO. These enhanced physico-chemical and electrochemical properties and the durability in marine environment allow MCFC to marine application as a auxiliary propulsion system.

$Llo{\rightarrow}Ni_5Al_3$ Transformation in Martensitic Ni-Al Alloys (NI-Al계 마르텐사이트 합금에서 $Llo{\rightarrow}Ni_5Al_3$ 변태)

  • Jee, K.K.;Song, S.Y.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.65-69
    • /
    • 2002
  • $Llo{\rightarrow}Ni_5Al_3$ reordering and related properties in Ni-Al alloys consisting of 64-65at%Ni are characterized by X-ray diffraction, shape memory effect and damping capacity. Formation of $Ni_5Al_3$ takes place by simple ordering of atoms with a continuous increase in c/a ratio. As a result, degradation of shape memory effect and damping capacity is observed after short time annealing at $200-300^{\circ}C$.

Valence Band Photoemission Study of the Kondo Insulator CeNiSn

  • Kang, J.S.;Olson, C.G.;Ouki, Y.
    • Journal of Magnetics
    • /
    • v.2 no.4
    • /
    • pp.111-115
    • /
    • 1997
  • The electronic structure of the Kondo insulator CeNiSn has been investigated by using photoemission spectroscopy. A satellite feature is observed in the valence band spectrum about 6 eV below the Ni 3d main peak, indicating a strong Ni 3d Coulomb correlation in CeNiSn. The Ce 4f partial spectral weight exhibits three peak structures, including one due to the 4f1\longrightarrow4f0 transition, another near EF, and the other which overlaps the Ni 3d main peak. We interpret the peak near EF as reflecting mainly the Ce 4f/Sn 5p hybridization, whereas that around the ni 3d main peak as reflecting both the Ce 4f/Ni 3d and Ce 5d/Ni 3d hybridization. Yield measurements across the 4d\longrightarrow4f threshold indicate the Ce valence to be close to 3+. The prominent Fermi edge suggests a metallic ground state in CeNiSn.

  • PDF