• Title/Summary/Keyword: Ni-Co Alloy

Search Result 342, Processing Time 0.023 seconds

Influence of Carbon Content on the Mechanical Properties of the Ni-Co Alloy (Ni-Co 합금강의 기계적 특성에 대한 탄소함량의 영향)

  • 장경천;국중민;정장만;권택용;최병기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.129-135
    • /
    • 2004
  • This study was to evaluate the effect of carbon content on metallic change and fatigue characteristics with Fe-29% Ni-17% Co, low heat expansion alloy, widely using electronic components, precision machines, and sealing with glass and metal etc. The steels were fabricated with variation of carbon content, 0, 0.03, 0.06, 0.1, and 0.20% with VIM and tensile test and fatigue test were performed to achieve the above purpose. The more carbon content, the higher hardness value and yield strength. But elongation of 0.03%C, 0.06%C, and 0.10%C specimen decreased about 2.2%, 1.5% and 0.8% respectively mote than that of the base metal. Especially the strength and elongation of 0.20%C specimen increased simultaneously about 14.4% and 7.5%. Fatigue life of 0.03%C specimen decreased but the more carbon content, the higher fatigue life over 0.06% carbon content more than that of base metal.

  • PDF

Fabrication and Performance Evaluation of a Micro Separation Chip of Magnetic Beads Using Magnetophoretic Flow (자기영동을 이용한 자성입자 분리 마이크로 칩 제작 및 성능평가)

  • Go, Jeung-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.392-397
    • /
    • 2007
  • We developed a microfluidic platform able to control the trap and release of magnetic beads used for separation of a specific biomolecules. The magnetic beads can be trapped and released conditionally by controlling the difference between the Stokes force induced by the fluid flow and magnetic force resulting from a permanent magnet. The permanent magnet of CoNiP alloy is electroplated. It is characterized to have the 1369 Oe of coercivity, 1762 Gauss of remanence, and 0.603MGOe of (BH)max. Through the experimental and numerical investigation, the magnetic beads are trapped under the flow velocity of 17 ${\mu}m/s$ and are released perfectly above the velocity of 174 ${\mu}m/s$.

Synthesis and Oxygen Reduction Reaction Characteristics of Multi-Walled Carbon Nanotubes Supported PtxM(1-x) (M = Co, Cu, Ni) Alloy Catalysts for Polymer Electrolyte Membrane Fuel Cell (다중벽 탄소 나노 튜브에 담지한 PtxM(1-x)(M = Co, Cu, Ni) 합금촉매의 제조 및 고분자 전해질 연료전지에서 산소환원 특성)

  • Jung, Dong-Won;Park, Soon;Ahn, Chi-Yeong;Choi, Seong-Ho;Kim, Jun-Bom
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.667-673
    • /
    • 2009
  • The electrocatalytic characteristics of oxygen reduction reaction of the $PtxM_{(1-x)}$ (M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The $Pt_xM_{(1-x)}$/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the $Pt_xM_{(1-x)}$ particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and $Pt_xM_{(1-x)}$/MWNTs catalysts are seen as FCC, and synthesized $Pt_xM_{(1-x)}$ crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, $Pt_{0.77}Co_{0.23}$/MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or $Pt_xM_{(1-x)}$/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/C catalyst. Among the MWNTs-supported Pt and $Pt_xM_{(1-x)}$ (M = Co, Cu, Ni) catalysts, the $Pt_{0.77}Co_{0.23}$/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.

The correlation between Spin Polarized Tunneling and Magnetic Moment in Co-Mn and Co-Fe Alloy Films (Co1-xFex와 Co1-xMnx 강자성 전이 합금 박막의 자기 모멘트와 터널 접합에 의한 스핀 편극치의 상관관계 연구)

  • Choi, Deung-Jang;Jang, Eun-Young;Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.5
    • /
    • pp.194-197
    • /
    • 2007
  • Understanding the spin polarization (P) has been an ongoing research challenge. The $Co_{1-x}Mn_x$ (x=0.27, 1) and $Co_{1-x}Fe_x$ (x=0, 0.5, 1) films were prepared using UHV-MBE system. For these films, the magnetic properties and spin polarization were investigated using SQUID and Meservey-Tedrow technique, respectively. Although measured P is uncorrelated to the bulk magnetic moment (M) in Co-Fe and Ni-Fe alloy films, it correlates with M in some alloys such as Co-Mn and Ni-Cu. The results can be understood by the tunneling currents made up of the hybridized sp-d electrons near the Fermi-energy level. Our work shows the feasibility to tailor new materials with large P values.

Growth of Vertically Aligned Carbon Nanotubes on Co-Ni Alloy Metal (Co-Ni 합금위에서 수직방향으로 정렬된 탄소나노튜브의 성장)

  • Ryu, Jae-Eun;Lee, Cheol-Jin;Lee, Tae-Jae;Son, Gyeong-Hui;Sin, Dong-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.451-454
    • /
    • 2000
  • We have grown vertically aligned carbon nanotubes in a large area of Co-Ni codeposited Si substrates by the thermal CVD usign $C_2H_2$ gas. Since the discovery of carbon nanotubes, growth of carbon nanotubes has been achieved by several methods such as laser vaporization, arc discharge, and pyrolysis. In particular, growth of vertically aligned nanotubes is important to flat panel display applications. Recently, vertically aligned carbon nanotubes have been grown on glass by PECVD. Aligned carbon nanotubes can be also grown on mesoporous silica and Fe patterned porous silicon using CVD. In this paper, we demonstrate that carbon nanotubes can be vertically aligned on catalyzed Si substrate when the domain density of catalytic particles reaches a certain value. We suggest that steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically and each nonotubes are grown in bundle.

  • PDF

Effect of Annealing Temperature on the Microstructure and Mechanical Properties of CoCrFeMnNi High Entropy Alloy (CoCrFeMnNi 고엔트로피 합금에서 어닐링 온도가 미세조직 및 기계적 특성에 미치는 영향)

  • Junseok Lee;Tae Hyeong Kim;Jae Wung Bae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.2
    • /
    • pp.58-65
    • /
    • 2024
  • In the present study, the effect of annealing condition on the microstructures and mechanical properties of the cold-rolled CoCrFeMnNi high entropy alloys were studied. Annealing treatment was performed under six different temperatures. Microstructural analyses confirmed that annealing below 800℃ resulted in the formation of intermetallic sigma (σ) phase within face-centered cubic (FCC) matrix, and this σ phase has beneficial effects on the formation of fine-grained structures through retardation of grain growth and recrystallization due to Zener pinning effect. This led to the enhanced yield strength and tensile strength of ~646 and ~855 MPa, respectively. The microstructures annealed above 800℃ demonstrated single FCC phase, and fully-recrystallized single FCC microstructure resulted in a slight increase in ductility with a considerable decrease in strength. The evolution of mechanical properties, such as strength, ductility, and strain hardening exponent, will be discussed.