Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.12.667

Synthesis and Oxygen Reduction Reaction Characteristics of Multi-Walled Carbon Nanotubes Supported PtxM(1-x) (M = Co, Cu, Ni) Alloy Catalysts for Polymer Electrolyte Membrane Fuel Cell  

Jung, Dong-Won (School of Materials Science and Engineering, Ulsan University)
Park, Soon (School of Materials Science and Engineering, Ulsan University)
Ahn, Chi-Yeong (School of Chemical engineering & Bioengineering, Ulsan University)
Choi, Seong-Ho (School of Chemical engineering & Bioengineering, Ulsan University)
Kim, Jun-Bom (School of Chemical engineering & Bioengineering, Ulsan University)
Publication Information
Korean Journal of Materials Research / v.19, no.12, 2009 , pp. 667-673 More about this Journal
Abstract
The electrocatalytic characteristics of oxygen reduction reaction of the $PtxM_{(1-x)}$ (M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The $Pt_xM_{(1-x)}$/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the $Pt_xM_{(1-x)}$ particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and $Pt_xM_{(1-x)}$/MWNTs catalysts are seen as FCC, and synthesized $Pt_xM_{(1-x)}$ crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, $Pt_{0.77}Co_{0.23}$/MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or $Pt_xM_{(1-x)}$/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/C catalyst. Among the MWNTs-supported Pt and $Pt_xM_{(1-x)}$ (M = Co, Cu, Ni) catalysts, the $Pt_{0.77}Co_{0.23}$/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.
Keywords
Pt alloy catalyst; carbon nanotubes; polymer electrolyte membrane fuel cell; oxygen reduction reaction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 S. Zhang, X. Yuan, H. Wang, W. Mérida, H. Zhu, J. Shen, S. Wu, J. Zhang, Int. J. Hydrogen Energy, 34, 388 (2009)   DOI   ScienceOn
2 Y. Shao, G. Yin, Y. Gao, J. Power Sources, 171, 558 (2007)   DOI   ScienceOn
3 Y. Shao, G. Yin, and Y. Gao, J. Power Sources, 171, 558 (2007)   DOI   ScienceOn
4 P. J. Ferreira, G. L. LaO, Y. S. Horn, D. Morgan, R. Makharia, S. Kocha, and H. A. Gasteiger, J. Electrochem. Soc., 152, A2256 (2005)   DOI   ScienceOn
5 T. Belin, F. Epron, Mater. Sci. Eng. B, 119, 105 (2005)   DOI   ScienceOn
6 C. Yang, X. Hu, D. Wang, C. Dai, L. Zhang, H. Jin, S. Agathopoulos, J. Power Sources, 106, 187 (2006)   DOI   ScienceOn
7 X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan, J. Power Sources, 158, 154 (2006)   DOI   ScienceOn
8 T. D. Fornes, J. W. Baur, Y. Sabba, E. L. Thomas, Polymer, 47, 1704 (2006)   DOI   ScienceOn
9 Z. Liu, L. M. Gan, L. Hong, W. X. Chen, and J. Y. Lee, J. Power Sources, 139, 73 (2005)   DOI   ScienceOn
10 S. Koh, C. Yu, P. Mani, R. Srivastava, P. Strasser, J. Power Sources, 172, 50 (2008)   DOI   ScienceOn
11 E. Antolini, J. R. C. Salgado, E. R. Gonzalez, J. Power Sources, 160, 957 (2006)   DOI   ScienceOn
12 Z. D. Wei, Y. C. Feng, L. Li, M. J. Liao, Y. Fu, C. X. Sun, Z. G. Shao, P. K. Shen, J. Power Sources, 180, 84 (2008)   DOI   ScienceOn
13 L. Xiong, A. M. Kannan, A. Manthiram, Electrochem. Commun., 4, 898 (2002)   DOI   ScienceOn
14 D. W. Jung, S. Park, J. T. Kang and J. B. Kim, Kor. J. Mater. Res. 19(5), 233 (2009)   DOI   ScienceOn
15 A. V. Virkar and Y. Zhou, J. Electrochem. Soc. 154, B540 (2007)   DOI   ScienceOn
16 Y. Shao, J. Wang, R. Kou, M. Engelhard, J. Liu, Y.Wang, Y. Lin, Electrochim Acta, 54, 3109 (2009)   DOI   ScienceOn
17 A. L. Dicks, J. Power Sources, 156, 128 (2006)   DOI   ScienceOn
18 F. Lufrano, E. Passalacqua, G. Squadrito, A. Patti, L. Giorgi, J. Appl. Electrochem., 29, 445 (1999)   DOI   ScienceOn
19 X. Yu, S. Ye, J. Power Sources, 172, 145 (2007)   DOI   ScienceOn
20 S. Iijima, Nature, 354, 56 (1991)   DOI
21 A. L. M. Reddya, N. Rajalakshmib, S. Ramaprabhu, Carbon, 46, 2 (2008)
22 L. Li, Y. Xing, J. Power Sources, 178, 75 (2008)   DOI   ScienceOn
23 J. J. Niu, J. N. Wang, Electrochim. Acta, 53, 8058 (2008)   DOI   ScienceOn
24 S. Xie, W. Li, Z. Pan, B. Chang, L. Sun, J. Phys. Chem. Solids, 61, 1153 (2000)   DOI   ScienceOn
25 Y. Shi, R. Yang, P. K. Yuet, Carbon, 47, 1146 (2009)   DOI   ScienceOn
26 P. Queipo, A. G. Nasibulin, D. Gonzalez, U. Tapper, H. Jiang, T. Tsuneta, K. Grigoras., J.A. Duenas., E.I. Kauppinen, Carbon, 44, 1581 (2006)   DOI   ScienceOn