DOI QR코드

DOI QR Code

Effect of Annealing Temperature on the Microstructure and Mechanical Properties of CoCrFeMnNi High Entropy Alloy

CoCrFeMnNi 고엔트로피 합금에서 어닐링 온도가 미세조직 및 기계적 특성에 미치는 영향

  • Junseok Lee (Department of Metallurgical Engineering, Pukyong National University) ;
  • Tae Hyeong Kim (Department of Metallurgical Engineering, Pukyong National University) ;
  • Jae Wung Bae (Department of Metallurgical Engineering, Pukyong National University)
  • 이준석 (부경대학교 융합소재공학부 금속공학전공) ;
  • 김태형 (부경대학교 융합소재공학부 금속공학전공) ;
  • 배재웅 (부경대학교 융합소재공학부 금속공학전공)
  • Received : 2024.01.26
  • Accepted : 2024.02.24
  • Published : 2024.03.30

Abstract

In the present study, the effect of annealing condition on the microstructures and mechanical properties of the cold-rolled CoCrFeMnNi high entropy alloys were studied. Annealing treatment was performed under six different temperatures. Microstructural analyses confirmed that annealing below 800℃ resulted in the formation of intermetallic sigma (σ) phase within face-centered cubic (FCC) matrix, and this σ phase has beneficial effects on the formation of fine-grained structures through retardation of grain growth and recrystallization due to Zener pinning effect. This led to the enhanced yield strength and tensile strength of ~646 and ~855 MPa, respectively. The microstructures annealed above 800℃ demonstrated single FCC phase, and fully-recrystallized single FCC microstructure resulted in a slight increase in ductility with a considerable decrease in strength. The evolution of mechanical properties, such as strength, ductility, and strain hardening exponent, will be discussed.

Keywords

Acknowledgement

This work was supported by a Research Grant of Pukyong National University (2022).

References

  1. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang : Adv Eng Mater, 6 (2004) 299-303.  https://doi.org/10.1002/adem.200300567
  2. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent : Materials Science and Engineering A, 375-377 (2004) 213-218.  https://doi.org/10.1016/j.msea.2003.10.257
  3. F. Otto, Y. Yang, H. Bei, and E. P. George : Materials Science and Engineering A, 728 (2013) 54-62. 
  4. B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie : Science, (1979) 345 (2014) 1153-1158.  https://doi.org/10.1126/science.1254581
  5. Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, and E. J. Lavernia : Acta Mater, 107 (2016) 59-71.  https://doi.org/10.1016/j.actamat.2016.01.050
  6. F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, and E. P. George : Acta Mater, 61 (2013) 5743-5755.  https://doi.org/10.1016/j.actamat.2013.06.018
  7. Bouaziz, C. P. Scott, G. Petitgand : Scr Mater, 60 (2009) 714-716.  https://doi.org/10.1016/j.scriptamat.2009.01.004
  8. C. Haase, T. Ingendahl, O. Guvenc, M. Bambach, W. Bleck, D. A. Molodov, and L. A. Barrales-Mora : Materials Science and Engineering A, 649 (2016) 74-84.  https://doi.org/10.1016/j.msea.2015.09.096
  9. H. Y. Yasuda, H. Miyamoto, K. Cho, and T. Nagase : Materials Letters, 199 (2017) 120-123.  https://doi.org/10.1016/j.matlet.2017.04.072
  10. N. D. Stepanov, D. G. Shaysultanov, R. S. Chernichenko, D. M. Ikornikov, V. N. Sanin, and S. V. Zherebtsov : Materials Science and Engineering A, 728 (2018) 54-62.  https://doi.org/10.1016/j.msea.2018.04.118
  11. H. Shahmir, J. He, Z. Lu, M. Kawasaki, and T. G. Langdon : Materials Science and Engineering A, 676 (2016) 294-303.  https://doi.org/10.1016/j.msea.2016.08.118
  12. F. Otto, A. Dlouhy, K.G. Pradeep, M. Kubenova, D. Raabe, G. Eggeler, and E. P. George : Acta Mater, 112 (2016) 40-52.  https://doi.org/10.1016/j.actamat.2016.04.005
  13. E. J. Pickering, R. Munoz-Moreno, H. J. Stone, and N. G. Jones : Scr Mater, 113 (2016) 106-109.  https://doi.org/10.1016/j.scriptamat.2015.10.025
  14. J. W. Bae, J. Moon, M. J. Jang, D. Yim, D. Kim, S. Lee, and H. S. Kim : Materials Science and Engineering A, 703 (2017) 324-330.  https://doi.org/10.1016/j.msea.2017.07.079
  15. J. W. Bae, J. M. Park, J. Moon, W. M. Choi, B. J. Lee, and H. S. Kim : J. Alloys Compd, 781 (2019) 75-83.  https://doi.org/10.1016/j.jallcom.2018.12.040
  16. M. Vaidya, K. Guruvidyathri, and B. S. Murty : J. Alloys Compd, 774 (2019) 856-864.  https://doi.org/10.1016/j.jallcom.2018.09.342
  17. N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, E. E. Oleynik, A. S. Tortika, and O. N. Senkov : J. Alloy Compd. 628 (2015) 170-185.  https://doi.org/10.1016/j.jallcom.2014.12.157
  18. Y. H. Jo, W. -M. Choi, S. S. Sohn, H. S. Kim, B. -J. Lee, and S. Lee : Materials Science and Engineering A, 724 (2018) 403-410.  https://doi.org/10.1016/j.msea.2018.03.115
  19. M. V. Klimova, D. G. Shaysultanov, S. V. Zherebtsov, and N. D. Stepanov : Materials Science and Engineering A, 748 (2019) 228-235.  https://doi.org/10.1016/j.msea.2019.01.112
  20. D. P. Field, L. T. Bradford, M. M. Nowell, and T. M. Lillo : Acta Mater, 55 (2007) 4233-4241.  https://doi.org/10.1016/j.actamat.2007.03.021
  21. N. J. Petch: J. Iron Steel Inst, 174 (1953): 25-28.  https://doi.org/10.1080/00357529.1953.11767976
  22. G. Laplanche, A. Kostka, O. M. Horst, G. Eggeler, and E. P. George : Acta Mater, 118 (2016) 152-163.  https://doi.org/10.1016/j.actamat.2016.07.038
  23. S. Curtze and V. T. Kuokkala : Acta Mater, 58 (2010) 5129-5141. https://doi.org/10.1016/j.actamat.2010.05.049