• 제목/요약/키워드: Ni Nanoparticle

검색결과 66건 처리시간 0.027초

Mg-Ni 금속 간 화합물 나노입자의 형성과 수소저장 특성 (Formation and Hydrogen Absorption Properties of Intermetallic Mg-Ni Compound Nanoparticles)

  • 배유근;황철민;김종수;동성룡;김세웅;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제28권3호
    • /
    • pp.238-245
    • /
    • 2017
  • Mg-Ni nanoparticles were synthesized by a physical vapor condensation method (DC arc-discharge) in a mixture of argon and hydrogen atmosphere, using compressed mixture of micro powders as the raw materials. The crystal phases, morphology, and microstructures of nanoparticles were analyzed by means of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found that the intermetallic compounds of $Mg_2Ni$ and $Mg_2Ni$ formed with existence of phases of Mg, Ni, and MgO in Mg-Ni nanoparticles. After one cycle of hydrogen absorption/desorption process (activation treatment), Mg-Ni nanoparticles exhibited excellent hydrogen absorption properties. $Mg_2Ni$ phase became the main phase by aphase transformation during the hydrogen treatments. The phenomenon of refinement of grain size in the nanoparticle was also observed after the hydrogen absorption/desorption processes, which was attributed to the effect of volume expansion/shrinkage and subsequent break of nanoparticles. Maximum hydrogen absorption contents are 1.75, 2.21 and 2.77 wt.% at 523, 573 and 623 K, respectively.

나노입자가 코팅된 그래핀 기반 수소센서의 제작과 그 특성 (Fabrication of Hydrogen Sensors Using Graphenes Decorated Nanoparticles and Their Characteristics)

  • 김강산;정귀상
    • 센서학회지
    • /
    • 제21권6호
    • /
    • pp.425-428
    • /
    • 2012
  • This paper presents the fabrication and characterization of graphene based hydrogen sensors. Graphene was synthesized by annealing process of Ni/3C-SiC thin films. Graphene was transferred onto oxidized Si substrates for fabrication of chemiresistive type hydrogen sensors. Au electrode on the graphene shows ohmic contact and the resistance is changed with hydrogen concentration. Nanoparticle catalysts of Pd and Pt were decorated. Response factor and response (recovery) time of hydrogen sensors based on the graphene are improved with catalysts. The response factors of pure graphene, Pt and Pd doped graphenes are 0.28, 0.6 and 1.26, respectively, at 50 ppm hydrogen concentration.

P-Type Doping of Graphene Films by Hybridization with Nickel Nanoparticles

  • Lee, Su Il;Song, Wooseok;Kim, Yooseok;song, Inkyung;Park, Sangeun;Cha, Myung-Jun;Jung, Dae Sung;Jung, Min Wook;An, Ki-Seok;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.208-208
    • /
    • 2013
  • Graphene has emerged as a fascinating material for next-generation nanoelectronics due to its outstanding electronic properties. In particular, graphene-based field effect transistors (GFETs) have been a promising research subject due to their superior response times, which are due to extremely high electron mobility at room temperature. The biggest challenges in GFET applications are control of carrier concentration and opening the bandgap of graphene. To overcome these problems, three approaches to doping graphene have been developed. Here we demonstrate the decoration of Ni nanoparticles (NPs) on graphene films by simple annealing for p-type doping of graphene. Ni NPs/graphene films were fabricated by coating a $NiCl2{\cdot}6H2O$ solution onto graphene followedby annealing. Scanning electron microscopy and atomic force microscopy revealed that high-density, uniformly sized Ni NPs were formed on the graphene films and the density of the Ni NPs increased gradually with increasing $NiCl2{\cdot}6H2O$ concentration. The formation of Ni NPs on graphene films was explained by heat-driven dechlorination and subsequent particlization, as investigated by X-ray photoelectron spectroscopy. The doping effect of Ni NPs onto graphene films was verified by Raman spectroscopy and electrical transport measurements.

  • PDF

Suzuki-Miyaura Cross-coupling Reaction Catalyzed by Nickel Nanoparticles Supported on Poly(N-vinyl-2-pyrrolidone)/TiO2-ZrO2 Composite

  • Kalbasi, Roozbeh Javad;Mosaddegh, Neda
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2584-2592
    • /
    • 2011
  • Nickel nanoparticle-poly(N-vinyl-2-pyrrolidone)/$TiO_2-ZrO_2$ composite (Ni-PVP/$TiO_2-ZrO_2$) was prepared by in situ polymerization method. The physical and chemical properties of Ni-PVP/$TiO_2-ZrO_2$ were investigated by XRD, FT-IR, BET, TGA, SEM and TEM techniques. The catalytic performance of this novel heterogeneous catalyst was determined for the Suzuki-Miyaura cross-coupling reaction between aryl halides and phenylboronic acid in the presence of methanol-water mixture as solvent. The effects of reaction temperature, the amount of catalyst, amount of support, solvent, and amount of metal for the synthesis of Ni-PVP/$TiO_2-ZrO_2$, were investigated as well as recyclability of the heterogeneous composite. The catalyst used for this synthetically useful transformation showed considerable level of reusability besides very good activity.

액중 전기선 폭발 공정을 이용한 Pt/alloy 하이브리드 나노입자의 제조 및 그 특성 (Synthesis of Pt/alloy Nanoparticles by Electrical Wire Explosion in Liquid Media and its Characteristics)

  • 구혜영;윤중열;양상선;이혜문
    • 한국입자에어로졸학회지
    • /
    • 제8권2호
    • /
    • pp.83-88
    • /
    • 2012
  • The electrical wire explosion process in liquid media is promising for nano-sized metal and/or alloy particles. The hybrid Pt/Fe-Cr-Al and Pt/Ni-Cr-Fe nanoparticles for exhaust emission control system are synthesized by electrical wire explosion process in liquid media. The alloy powders have spherical shape and nanometer size. According to the wire component, while Pt/Fe-Cr-Al nanoparticles are shown the well dispersed Pt on the Fe-Cr-Al core particle, Pt/Ni-Cr-Fe nanoparticles are shown the partially separated Pt on the Ni-Cr-Fe core particle. Morphologies and component of two kinds of hybrid nano catalyst particles were characterized by transmission electron microscope and energy dispersive X-ray spectroscopy analysis.

폐과일껍질을 이용한 친환경 NiO 나노분말 합성 및 향균특성 연구 (Enviroment-Friendly Synthesis of Nanocrystalline Nickel Oxide and Its Antibacterial Properties)

  • ;송재숙;홍순익
    • 한국재료학회지
    • /
    • 제28권1호
    • /
    • pp.24-31
    • /
    • 2018
  • This study reports an environment-friendly synthetic strategy to process nickel oxide nanocrystals. A mesoporous nickel oxide nanostructure was synthesized using an environmentally benign biomimetic method. We used a natural rambutan peel waste resource as a raw material to ligate nickel ions to form nickel-ellagate complexes. The direct decomposition of the obtained complexes at $700^{\circ}C$, $900^{\circ}C$ and $1100^{\circ}C$ in a static air atmosphere resulted in mesoporous nickel oxide nanostructures. The formation of columnar mesoporous NiO with a concentric stacked doughnuts architecture was purely dependent on the suitable direct decomposition temperature at $1100^{\circ}C$ when the synthesis was carried out. The prepared NiO nanocrystals were coated on cotton fabric and their antibacterial activity was also analyzed. The NiO nanoparticle-treated cotton fabric exhibited good antibacterial and wash durability performance.

탄소층으로 캡슐화된 Ni나노입자 촉매의 CO2 메탄화 반응 (Carbon-Encapsulated Ni Catalysts for CO2 Methanation)

  • 김혜정;김승보;김동현;윤재랑;김민재;전상구;이경자;이규복
    • 한국재료학회지
    • /
    • 제31권9호
    • /
    • pp.525-531
    • /
    • 2021
  • Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5 % CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 ℃ and 70 % at 400 ℃, which are 73 and 75 % of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.

저에너지 플루언스(fluence) 레이저 어블레이션(ablation)을 통한 표면오염제거과정에서의 나노입자의 생성에 관한 연구 (Investigation of Nanoparticle Generation during Surface Decontamination by Low-Energy-Fluence Laser Ablation)

  • Lee, Doh-Won;Cheng, Meng-Dawn
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2003년도 추계학술대회 논문집
    • /
    • pp.199-199
    • /
    • 2003
  • During the cleanup of US Department of energy facilities, contaminated materials, toxic and hazardous radionuclides (e.g., Th, Cs, and U) and heavy metals (e.g., Cr, Hg, Pb, and Ni)-laden ultrafine particles are generated. The size of the particles is up to about 200 nm. Understanding of the production of these nanometer size particles is critical in determining the surface cleaning efficiently. (omitted)

  • PDF

주석-니켈 나노입자 복합체의 리튬 이차전지 음전극 특성 (Anode Properties of Sn-Ni Nanoparticle Composites for Rechargeable Lithium Batteries)

  • 김광만;강근영;최민규;이영기
    • Korean Chemical Engineering Research
    • /
    • 제49권6호
    • /
    • pp.846-850
    • /
    • 2011
  • 주석과 니켈 나노입자를 함량별로 혼합하여 습식법으로 리튬 이차전지용 복합체 음전극을 제조하고 그 물성과 전기화학적 특성을 조사하였다. 이 음전극은 초기 방전시 최대 700 mAh $g^{-1}$의 우수한 방전용량을 나타내었지만 사이클 특성은 심각한 열화를 보였다. 이것은 나노입자간 단순혼합만으로는 전극판의 기공성과 Ni 성분이 충방전에 따르는 Sn성분의 팽창/수축에 대한 기계적 완충제 역할이 충분하지 않았기 때문이며, 차후 이를 보완하는 나노구조체 Sn-Ni 음전극의 설계와 시험이 필요하다.

Evaluation of Magnetic and Thermal Properties of Ferrite Nanoparticles for Biomedical Applications

  • Tomitaka, Asahi;Jeun, Min-Hong;Bae, Seong-Tae;Takemura, Yasushi
    • Journal of Magnetics
    • /
    • 제16권2호
    • /
    • pp.164-168
    • /
    • 2011
  • Magnetic nanoparticles can potentially be used in drug delivery systems and for hyperthermia therapy. The applicability of $Fe_3O_4$, $CoFe_2O_4$, $MgFe_2O_4$, and $NiFe_2O_4$ nanoparticles for the same was studied by evaluating their magnetization, thermal efficiency, and biocompatibility. $Fe_3O_4$ and $CoFe_2O_4$ nanoparticles exhibited large magnetization. $Fe_3O_4$ and $NiFe_2O_4$ nanoparticles exhibited large induction heating. $MgFe_2O_4$ nanoparticles exhibited low magnetization compared to the other nanoparticles. $NiFe_2O_4$ nanoparticles were found to be cytotoxic, whereas the other nanoparticles were not cytotoxic. This study indicates that $Fe_3O_4$ nanoparticles could be the most suitable ones for hyperthermia therapy.