• Title/Summary/Keyword: Ni/ZnO

Search Result 527, Processing Time 0.029 seconds

Effect of Internal Electrode on the Microstructure of Multilayer PTC Thermistor (적층형 PTC 서미스터의 미세구조와 PTCR 물성에 미치는 내부전극재의 영향)

  • Myoung, Seong-Jae;Lee, Jung-Chul;Hur, Geun;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.181-181
    • /
    • 2007
  • PTCR 세라믹스를 적층형 부품으로 제조할 경우 소형화, 저 저항화 및 과전류 유입 시 빠른 응답특성을 갖는다는 장점을 가지고 있으며, 이러한 적층형 부품제조시에는 내부전극재가 부품소자의 물성에 중요한 영향을 미친다. 특히 우수한 옴성 접촉(Ohmic Contact)을 갖는 Zn, Fe, Sn, Ni 등의 적층 PTC용 전극재는 높은 산화특성으로 인해 재산화 과정에서의 비옴성 접촉(Non-ohmic contact)을 갖게 되어 PTC 특성을 저하시킬 우려가 있다. 따라서 본 연구에서는 적층형 PTCR 세라믹스의 내부전극재와 반도체 세라믹층의 동시소성거동 및 적층 PTCR 세라믹스의 전기적 특성을 평가하였다. 본 연구에 적용된 내부전극재로는 Ni 전극을 사용하였고, Ni 전극용 paste로는 무공제 paste, 반도체 세라믹공제 paste, $BaTiO_3$ 공제 paste의 3종 전극재가 이용되었다. 적층형 PTCR 세라믹스의 제조공정은 테이프 캐스팅(Tape casting), 내부전극인쇄, 적층 및 동시소성을 포함하는 적층화공정을 적용하였다. 각각의 전극 paste를 적용하여 제조된 chip은 미세구조관찰, I-V특성, R-T특성 등을 평가하여 내부전극내 세라믹공제의 영향을 고찰하였다.

  • PDF

Synthesis of Pentadentate Nitrogen-Oxygen(N2O3) Ligands with Substituting Groups and Determination of Stability Constants of Their Transition Metal(II) Complexes (치환기를 가진 다섯 자리 질소-산소 (N2O3)계 리간드의 합성 및 전이금속(II) 이온과의 착물 안정도상수 결정)

  • Kim, Seon-Deuk;Lee, Hye-Won;Jin, Gyoung-Rok
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.735-746
    • /
    • 2009
  • Hydrochloric acid salt of a new $N_2O_3$ pentadentate ligand, N,N'-Bis(2-Hydroxybenzyl)-1,3-diamino-2-propanol(H-BHDP 2HCl) was synthesized. Br-BHDP 2HCl, CI-BHDP 2HCl, $CH_3-BHDP$ 2HCl and $CH_3O$-BHDP 2HCl having Br, Cl, $CH_3$ and $CH_3O$ substituents at 5-position of the phenol group of H-BHDP 2HCl were also synthesized. The potentiometry study in aqueous solution revealed that the proton dissociations of the synthesized ligands occurred in four steps and their order of the calculated overall proton dissociation constants($log{\beta}_p$) was Br-BHDP < Cl-BHDP < H-BHDP < $CH_3O-BHDP$ < $CH_3-BHDP$. The order showed a similar trend to that of Hammett substituent constants(${\delta}_p$). The order of the stability constants($logK_{ML}$) was Co(II) < Ni(II) < Cu(II) < Zn(II) < Cd(II) < Pb(II). The order in their stability constants ($logK_{ML}$) of each transition metal complex agreed with that of the overall proton dissociation constants ($log{\beta}_p$).

Stability Constants of First-row Transition Metal and Trivalent Lanthanide Metal Ion Complexes with Macrocyclic Tetraazatetraacetic and Tetraazatetramethylacetic Acids

  • 홍춘표;김동원;최기영;김창태;최용규
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.297-300
    • /
    • 1999
  • The protonation constants of the macrocyclic ligands, 1,4-dioxa-7,10,13,16-tetraaza-cyclooctadecane-N,N',N",N"'-tetra(acetic acid) [N-ac4[18]aneN402] and 1,4-dioxa-7,10,13,16-tetraazacyclooctadecane-1,4-dioxa-7,10,13,16-N,N',N",N"'-tetra(methylacetic acid) [N-meac4[18]aneN4O2] have been determined by using potentiometric method. The protonation constants of the N-ac4[18]aneN4O2 were 9.31 for logK1H, 8.94 for logK2H, 7.82 for logK3H, 4.48 for logK4H and 2.94 for logK5H. And the protonation constants of the N-meac4[18]aneN4O2 were 9.34 for logK1H, 9.13 for logK2H, 8.05 for logK3H, 5.86 for logK4H, and 3.55 for logK5H. The stability constants of complexes on the divalent transition ions (Co2+, Ni2+, Cu2+, and Zn2+) and tiivalent metal ions (Ce3+, Eu3+, Gd3+, and Yb3+) with ligands N-ac4[18]-aneN4O2 and N-meac4[18]aneN4O2 have been obtained from the potentiometric data with the aid of the BEST program. The three higher values of the protonation constants for synthesized macrocyclic ligands correspond to the protonation of nitrogen atoms, and the fourth and fifth values correspond to the protonation of the carboxylate groups for the N-ac4[18]aneN4O2 and N-meac4[18]aneN4O2. The meatal ion affinities of the two tetra-azamacrocyclic ligands with four pendant acetate donor groups or methylacetate donor groups are compared. The effects of the metal ions on the stabilities are discussed, and the trends in stability constants resulting from changing the macrocyclic ring with pendant donor groups and acidity of the metal ions.

Occurrence and Chemical Composition of White Mica from Wallrock Alteration Zone of Janggun Pb-Zn Deposit (장군 연-아연 광상의 모암변질대에서 산출되는 백색운모의 산상 및 화학조성)

  • Bong Chul, Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.469-484
    • /
    • 2022
  • The Janggun Pb-Zn deposit has been known one of the four largest deposits (Yeonhwa, Shinyemi, Uljin) in South Korea. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This Pb-Zn deposit is hydrothermal replacement deposit in Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this deposit consists of mainly rhodochrositization and dolomitization with minor of pyritization, sericitization and chloritization. Wallrock alteration is divided into the five zones (Pb-Zn orebody -> rhodochrosite zone -> dolomite zone -> dolomitic limestone zone -> limestone or dolomitic marble) from orebody to wallrock. The white mica from wallrock alteration occurs as fine or medium aggregate associated with Ca-dolomite, Ferroan ankerite, sideroplesite, rutile, apatite, arsenopyrite, pyrite, sphalerite, galena, quartz, chlorite and calcite. The structural formular of white mica from wallrock alteration is (K0.77-0.62Na0.03-0.00Ca0.03-0.00Ba0.00Sr0.01)0.82-0.64(Al1.72-1.48Mg0.48-0.20Fe0.04-0.01Mn0.03-0.00Ti0.01-0.00Cr0.00As0.01-0.00Co0.03-0.00Zn0.03-0.00Pb0.05-0.00Ni0.01-0.00)2.07-1.92 (Si3.43-3.33Al0.67-0.57)4.00O10(OH1.94-1.80F0.20-0.06)2.00. It indicated that white mica from wallrock alteration has less K, Na and Ca, and more Si than theoretical dioctahedral micas. The white micas from wallrock alteration of Janggun Pb-Zn deposit, Yeonhwa 1 Pb-Zn deposit and Baekjeon Au-Ag deposit, and limestone of Gumoonso area correspond to muscovite and phengite and white mica from wallrock alteration of Dunjeon Au-Ag deposit corresponds to muscovite. Compositional variations in white mica from wallrock alteration of these deposits and limeston of Gumoonso area are caused by mainly phengitic or Tschermark substitution mechanism (Janggun Pb-Zn deposit), mainly phengitic or Tschermark substitution and partly illitic substitution mechanism (Yeonhwa 1 Pb-Zn deposit, Dunjeon Au-Ag deposit and Baekjeon Au-Ag deposit), and mainly phengitic or Tschermark substitution and partly illitic substitution or Na+ <-> K+ substitution mechanism (Gumoonso area).

Studies on the Separation and Preconcentration of Metal Ions by XAD-16-[4-(2-thiazolylazo)] orcinol Chelating Resin (XAD-16-[4-(2-thiazolylazo)]orcinol 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구)

  • Lee, Won;Seol, Kyung-Mi;An, Hye-Sook;Lee, Chang-Heon;Lim, Jae-Hee
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.282-290
    • /
    • 1997
  • The sorption and desorption properties of U(VI), Th(IV), Zr(IV), Cu(II), Pb(II), Ni(II), Zn(II), Cd(II) and Mn(II) ions on XAD-16-[4-(2-thiazolylazo)orcinol] (TAO) chelating resin were studied by elution method. The effect was examined with respect to overall capacity of each metal ion, separation of mixed metal ions, flow rate and concentration of buffer solution for optimum condition of sorption. The overall capacities of some metal ions on this chelating resin were 0.35nmol U(VI)/g resin, 0.49nmol Th(IV)/g resin, 0.41nmol Cu(II)/g resin, and 0.31nmol Zr(IV)/g resin, respectively. The elution order of metal ions obtained from breakthrough capacity and overall capacity at pH 5.0 was Th(IV)>Cu(II)>U(VI)>Zr(IV)>Pb(II)>Ni(II)>Zn(II)>Mn(II)>Cd(II). The group separation of mixed metal ions was possible by increasing pH in pH range 2~5 at a flow rate of 0.28mL/min. Characteristics of desorption were investigated with desorption agents such as $HNO_3$, HCl, $HClO_4$, $H_2SO_4$, and $Na_2CO_3$. It was found that 2M $HNO_3$ showed high desorption efficiency to most of metal ions except Zr(IV) ion. Also, desorption and recovery of Zr(IV) ion were successfully performed with 1M $H_2SO_4$. Recovery of trace amount of U(VI) ion from artificial sea water was over 94%. The chelating resin, XAD-16-TAO was successfully applied to group separation of rare earth metal ions from U(VI) by using 2M $HNO_3$ as an eluent.

  • PDF

Transparent Conductors for Photoelectric Devices

  • Kim, Joondong;Patel, Malkeshkumar;Kim, Hong-Sik;Yun, Ju-Hyung;Kim, Hyunki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.87.2-87.2
    • /
    • 2015
  • Transparent conductors are commonly used in photoelectric devices, where the electric energy converts to light energy or vice versa. Energy consumption devices, such as LEDs, Displays, Lighting devices use the electrical energy to generate light by carrier recombination. Meanwhile, solar cell is the only device to generate electric energy from the incident photon. Most photoelectric devices require a transparent electrode to pass the light in or out from a device. Beyond the passive role, transparent conductors can be employed to form Schottky junction or heterojunction to establish a rectifying current flow. Transparent conductor-embedded heterojunction device provides significant advantages of transparent electrode formation, no need for intentional doping process, and enhanced light-reactive surface area. Herein, we present versatile applications of transparent conductors, such as NiO, ZnO, ITO in photoelectric devices of solar cells and photodetectors for high-performing UV or IR detection. Moreover, we also introduce the growth of transparent ITO nanowires by sputtering methods for large scale application.

  • PDF

Pb Biosorption by Saccharomyces cerevisiae (Saccharomyces cerevisiae에 의한 Pb 생체흡착)

  • 안갑환;서근학
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.173-180
    • /
    • 1996
  • The contamination of the environment by heavy metals results in a serious public health problem due to the toxicity of those pollutants even at low concentrations. Microorganisms may be used to remediate wastewaters contamlialtd with heavy metals. The waste S. cerevisiae is an inexpensive readily available source of biomass for bioremediation of wastewater. S. cerevisiae was investigated for their ability to absorb Pb. The crushed biomass of S. cerevisiae exhibited higher Pb uptake capacity than the living S. cerevisiae and the sterilized S. cerevisiae. At the same metal concentration, metal uptake per unit concentration or adsorbent decreased when the biomass concentration rises. The order of the biosorption capacity of the living S. cerevisiae was Pb>Cu>Cd=Co>Cr. When S. cerevisiae was pretreated with 0.1 M NaOH, Pb uptake was increased by 150 percent and 0.1 M HC1, 0.1 M $H_2S_O4$ solutions were efficient in the desorption of Pb. The sorption equilibrium of Pb ions can be described by the Freundlich and Langmuir models.

  • PDF

Ion Exchange Recovery of Rhenium and Its Determination in Aqueous Solutions by Diffuse Reflection Spectroscopy

  • Kalyakina, O.P.;Kononova, O.N.;Kachin, S.V.;Kholmogorov, A.G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.79-84
    • /
    • 2004
  • The existing technological schemes for processing rhenium-containing raw materials involve the recovery of Re from solutions, which can be effectively achieved by anion exchange method. The application of anion exchange also allows to study rhenium state in aqueous solutions and to develop analytical control methods. The present work is focused on investigation of ion exchange equilibrium in the analytical system Re(VII)-HCl-$SnCl_2$-KSCN-anion exchanger by means of sorption-desorption method as well as by electron, IR- and diffuse reflection spectroscopy. It was shown that rhenium can be quantitatively recovered from this system. It is proposed to use the sorption-spectroscopic method for Re(VII) determination in aqueous solutions. The calibration curve is linear in the concentration range of 0.5-20.0 mg/L (sample volume is 25.0 mL) and the detection limit is 0.05 mg/L. The presence of Mo(VI), Cu(II), Fe(II, III), Ni(II), Zn(II) as well as $K^+,\;Na^+$ do not hinder the solid-phase determination of rhenium. Rhenium (VII) determination by diffuse reflection spectroscopy was carried out in model solutions as well as in samples of river-derived water and in solutions obtained after the dissolution of spent catalysts.

Characterization of the Starch Degradation Activity of recombinant glucoamylase from Extremophile Deinococcus geothermalis (극한성 미생물Deinococcus geothermalis 유래 재조합 글루코아밀레이즈의 전분 분해 활성 특징)

  • Jang, Seung-Won;Kwon, Deok-Ho;Park, Jae-Bum;Jung, Jong-Hyun;Ha, Suk-Jin
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.15-19
    • /
    • 2019
  • This work focused on characterization of the starch degradation activity from extremophile strain Deinococcus geothermalis. Glucoamylase gene from D. geothermalis was cloned and overexpressed by pET-21a vector using E. coli BL21 (DE3). In order to characterize starch degrading activity of recombinant glucoamylase, enzyme was purified using HisPur Ni-NTA column. The recombinant glucoamylase from D. geothermalis exhibited the optimum temperature as $45^{\circ}C$ for starch degradation activity. And highly acido-stable starch degrading activity was shown at pH 2. For further optimization of starch degrading activity with metal ion, various metal ions ($AgCl_2$, $HgCl_2$, $MnSO_4{\cdot}4H_2O$, $CoCl_2{\cdot}6H_2O$, $MgSO_4$, $ZnSO_4{\cdot}7H_2O$, $K_2SO_4$, $FeCl_2{\cdot}4H_2O$, NaCl, or $CuSO_4$) were added for enzyme reaction. As results, it was found that $FeCl_2{\cdot}4H_2O$ or $MnSO_4{\cdot}4H_2O$ addition resulted in 17% and 9% improved starch degrading activity, respectively. The recombinant glucoamylase from D. geothermalis might be used for simultaneous saccharification and fermentation (SSF) process at high acidic conditions.

Synthesis of Heptadentate Nitrogen-Oxygen Ligands (N4O3) with Substituting Groups and Determination of Stability Constants of Their Transition Metal(II) Complexes (치환기를 가진 일곱 자리 질소-산소(N4O3)계 리간드 합성과 전이금속(II) 이온 착물의 안정도상수 결정)

  • Kim, Sun-Deuk;Lee, Do-Hyub;Seol, Jong-Min
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.541-550
    • /
    • 2010
  • A new $N_4O_3$ heptadentate ligand, N,N'-Bis(2-hydroxybenzyl)-1,3-bis[(2-aminoethyl)amino]-2-propanol(H-BAP 4HCl)was synthesized. The hydrochloric acid salts of Br-BAP 4HCl, Cl-BAP 4HCl, $CH_3O$-BAP 4HCl and $CH_3$-BAP 4HCl containing Br-, Cl-, H-, $CH_3O-$ and $CH_{3^-}$ groups at the para-site of the phenol group of the H-BAP were synthesized. The structures of the ligands were confirmed by C. H. N. atomic analysis and $^1H$ NMR, $^{13}C$ NMR, UV-visible and mass spectra. The elemental stepwise protonation constants(${logK_n}^H$) of the synthesized $N_4O_3$ ligands showed six steps of the proton dissociation. The orders of the overall dissociation constants($log{\beta}_p$) of the ligands were Br-BAP < Cl-BAP < H-BAP < $CH_3O$-BAP < $CH_3$-BAP. The orders agreed well with that of Hammett substituent constants($\sigma_p$). The calculated stability constants($logK_{ML}$) between the ligands and transition metal ions agreed well with the order of the overall proton dissociation constants of the ligands but they showed a reverse order in Hammestt substituent constants($\sigma_p$). The order of the stability constants between the transition metal ions with the ligands were Co(II) < Ni(II) < Cu(II) > Zn(II) > Cd(II) > Pb(II).