DOI QR코드

DOI QR Code

Stability Constants of First-row Transition Metal and Trivalent Lanthanide Metal Ion Complexes with Macrocyclic Tetraazatetraacetic and Tetraazatetramethylacetic Acids

  • Published : 1999.03.20

Abstract

The protonation constants of the macrocyclic ligands, 1,4-dioxa-7,10,13,16-tetraaza-cyclooctadecane-N,N',N",N"'-tetra(acetic acid) [N-ac4[18]aneN402] and 1,4-dioxa-7,10,13,16-tetraazacyclooctadecane-1,4-dioxa-7,10,13,16-N,N',N",N"'-tetra(methylacetic acid) [N-meac4[18]aneN4O2] have been determined by using potentiometric method. The protonation constants of the N-ac4[18]aneN4O2 were 9.31 for logK1H, 8.94 for logK2H, 7.82 for logK3H, 4.48 for logK4H and 2.94 for logK5H. And the protonation constants of the N-meac4[18]aneN4O2 were 9.34 for logK1H, 9.13 for logK2H, 8.05 for logK3H, 5.86 for logK4H, and 3.55 for logK5H. The stability constants of complexes on the divalent transition ions (Co2+, Ni2+, Cu2+, and Zn2+) and tiivalent metal ions (Ce3+, Eu3+, Gd3+, and Yb3+) with ligands N-ac4[18]-aneN4O2 and N-meac4[18]aneN4O2 have been obtained from the potentiometric data with the aid of the BEST program. The three higher values of the protonation constants for synthesized macrocyclic ligands correspond to the protonation of nitrogen atoms, and the fourth and fifth values correspond to the protonation of the carboxylate groups for the N-ac4[18]aneN4O2 and N-meac4[18]aneN4O2. The meatal ion affinities of the two tetra-azamacrocyclic ligands with four pendant acetate donor groups or methylacetate donor groups are compared. The effects of the metal ions on the stabilities are discussed, and the trends in stability constants resulting from changing the macrocyclic ring with pendant donor groups and acidity of the metal ions.

Keywords

References

  1. Inorg. Chem. Acta v.138 Martell, A. E.;Motekaitis, R. J.;Sala, L. F.;Stoldt, R.;Ng, C. Y.;Rosenkrantz, H.;Metterville, J. J.
  2. J. Chem. Soc., Chem. Commun. Riesen, A.;Kaden, T. A.;Ritter, W.;Macke, H. R.
  3. Chem. Rev. v.87 Lauffer, R. C.
  4. J. Coord. Chem. v.30 Choi, K. Y.;Kim, J. C.;Kim, D. W.
  5. Bull. Chem. Soc. Jpn. v.67 Choi, K. Y.;Kim, K. S.;Kim, J. C.
  6. Polyhedron v.13 Choi, K. Y.;Kim, K. S.;Kim, J. C.
  7. Polyhedron v.14 Choi, K. Y.;Kim, D. W.;Hong, C. P.
  8. Supramol. Chem. v.7 Choi, K. Y.;Kang, S. H.;Kim, D. W.;Chung, Y. S.;Kim, C. S.;Oh, J. J.;Hong, C. P.;Lee, Y. I.
  9. Bull. Korean Chem. Soc. v.17 Kim, D. W.;Hong, C. P.;Choi, K. Y.;Kim, C. S.;Lee, N. S.;Jang, Y. H.;Lee, J. K.
  10. Inorg. Chem. v.32 Delgado, R.;Ramunas, Y. S.;Motekaitis, J.;Martell, A. E.
  11. J. Org. Chem. v.40 Krespan, C. G.
  12. J. Chem. Soc., Dalton Trans. Amorim, M. T. S.;Ascenso, J. R.;Delgado, R.;Fraustoda Silva, J. J. R.
  13. J. Chem. Soc., Perkin Trans. v.2 Broan, C. J.;Cox, J. P. L.;Craig, A. S.;Kataky, R.;Parker, D.;Harrison, A.;Randall, A. M.;Ferguson, G.
  14. Tetrahedron v.47 Sun, Y.;Martell, A. E.;Welch, M.
  15. Inorg. Chem. Acta v.181 Clarke, E. T.;Martell, A. E.
  16. Nippon Kagaru Kaishi v.7 Hana, H.;Takamoto, S.
  17. Bull. Korean Chem. Soc. v.18 Hong, C. P.;Kim, D. W.;Choi, K. Y.
  18. Determination and Use of Stability Costants(2nd Ed) Martell, A. E.;Motekaitis, R. J.
  19. Talanta v.35 Amorim, M. T. S.;Ascenso, J. R.;Delgado, R.;Frauston da Silva, J. J. R.;Vaz, M. C. T. A.;Vilhena, M. F.
  20. J. Chem. Soc. Irving, H.;Williams, R. J. P.
  21. J. Chem. Educ. v.47 Moeller, T.