Browse > Article
http://dx.doi.org/10.5012/jkcs.2010.54.5.541

Synthesis of Heptadentate Nitrogen-Oxygen Ligands (N4O3) with Substituting Groups and Determination of Stability Constants of Their Transition Metal(II) Complexes  

Kim, Sun-Deuk (Department of Chemistry and Applied Chemistry, Deagu University)
Lee, Do-Hyub (Department of Chemistry and Applied Chemistry, Deagu University)
Seol, Jong-Min (Department of Chemistry and Applied Chemistry, Deagu University)
Publication Information
Abstract
A new $N_4O_3$ heptadentate ligand, N,N'-Bis(2-hydroxybenzyl)-1,3-bis[(2-aminoethyl)amino]-2-propanol(H-BAP 4HCl)was synthesized. The hydrochloric acid salts of Br-BAP 4HCl, Cl-BAP 4HCl, $CH_3O$-BAP 4HCl and $CH_3$-BAP 4HCl containing Br-, Cl-, H-, $CH_3O-$ and $CH_{3^-}$ groups at the para-site of the phenol group of the H-BAP were synthesized. The structures of the ligands were confirmed by C. H. N. atomic analysis and $^1H$ NMR, $^{13}C$ NMR, UV-visible and mass spectra. The elemental stepwise protonation constants(${logK_n}^H$) of the synthesized $N_4O_3$ ligands showed six steps of the proton dissociation. The orders of the overall dissociation constants($log{\beta}_p$) of the ligands were Br-BAP < Cl-BAP < H-BAP < $CH_3O$-BAP < $CH_3$-BAP. The orders agreed well with that of Hammett substituent constants($\sigma_p$). The calculated stability constants($logK_{ML}$) between the ligands and transition metal ions agreed well with the order of the overall proton dissociation constants of the ligands but they showed a reverse order in Hammestt substituent constants($\sigma_p$). The order of the stability constants between the transition metal ions with the ligands were Co(II) < Ni(II) < Cu(II) > Zn(II) > Cd(II) > Pb(II).
Keywords
$N_4O_3$ heptadentate ligand; Stepwise dissociation constants; Stability constants;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Koseoglu, F.; Kilic, E.; Canel, E., Yilmaz, N. Anal. Chim. Acta. 1994, 293, 87.   DOI
2 Kim, S. D.; Jin, G. R. Analtical Science & Technology, 2006, 19(2), 131.
3 Kim, S. D.; Jang, K. H.; Kim, J. K. J. of Kor. Chem. Soc. 1998, 42(5), 539.
4 Ercorani, G.; Mandolini, L.; Masci, B. J. Am. Chem. Soc. 1981, 103, 2780.   DOI
5 Lin, H. K.; Wang, X.; Su, X. C.; Zhu, S. R. Chen, Y. T. Trans. Metal. Chem. 2002, 27, 384.   DOI
6 Yang, L. W.; Liu, S.; Wong, E.; Rettig, S. J.; Orvig, C. Inorg. Chem. 1995, 34, 2164.   DOI
7 Bera, M.; Biradha, K.; Ray, D. Inorg. Chim. Acta, 2004, 357, 3556.   DOI
8 Hassan, K.; Sadegh, S.; Parish, R. V. Molecules, 2002, 7, 140.   DOI
9 Xie, Y. S.; Liu, X. T.; Zhang, M.; Wei, K. J.; Liu, Q. L. Polyhedron, 2005, 24, 165.   DOI
10 Wong, E.; Liu, S.; Lugger, T.; Hahn, E.; Orvic, C. Inorg. Chem. 1995, 34, 93.   DOI
11 Martell, A. E.; Motekaitis, R. J. Determination and Use of Stability Constants. 2nd Ed. VCH, New York, 1992.
12 Parsons, B. G. H.; Rochester, C. H. J. Chem. Soc. Faraday, 1975, 71, 1058.   DOI
13 Coleman, W. M.; Taylor, L. T. J. inorg. nucl. Chem. 1980, 42, 683.   DOI
14 Thirunarayanan, G.; Ananthakrishna Nadar, P. J. of Korean Chem. Soc. 2006, 50(3), 183.   DOI
15 Brooker, S.; Iremonger, S. S.; Plieger, P. G. Polyhedron, 2003, 22, 665.   DOI
16 Jorge, M.; Ana, M. G.; Andres, V.; Andres, I. Polyhedron, 2007, 26, 115.   DOI
17 Molina, R. H.; Mederos, A.; Gili, P.; Dominguez, S. D.; Nuncz, P. Polyhedron, 1997, 16(24), 4191.   DOI
18 Rakesh, K.; Kohli, K.; Gopalakalishnan.; Bhattachacharya, P. K. J. inorg. nucl. Chem. 1981, 43, 331.   DOI
19 Bryan, C. W.; Richard, E. Inorg. Chem. 1983, 22(1), 1.   DOI
20 Reed, G. K.; Jorn, K.; Erich, N. J.; J. Am. Soar, G.; Ray, J. B.; Pradyot, B. J. Inorg. Chem. 2003, 1540.
21 Anangamohan, P.; Nizamuddin, S.; Ray, J. B.; Pradyot, B. Inorg. Chinica, Acta, 2003, 351, 27.   DOI
22 Mauro, C.; Faede, C.; Sandra, I.; Giancarlo, P.; Costantino, S. Inorg. Chinica, Acta, 2003, 353, 310.   DOI
23 Ghosh, R.; Rahaman, S. H.; Lin, C. N.; Lu, R. H.; Ghosh. B. K. Polyhedron, 2006, 25, 3104.   DOI
24 Kim, S. D.; Kim, J. K.; Lee, W. S. J. of Korean Chem. Soc. 2000, 44(6), 518.
25 Essig, M. W.; Webster, K.; Brian, L. S.; John, G. W. Polyhedron, 2001, 20, 373.   DOI
26 Ivo, F. J.; Vankelecom.; Diedrik, T.; Rudy, F. P.; Valerie, V. V.; Pierre, A. J. Angew. Chem. Int. Ed. Engl. 1996, 35(12), 1346.   DOI
27 Maneiro, M.; Bermejo, M. R.; Sousa, A.; Fondo, M.; Gonzalez, A. M.; Sousa-Pedrares, A.; McAuliffe, C. Polyhedron, 2000, 19, 47.   DOI
28 Caroline, J.; Aminou, M.; Christian, G.; Stephane, B.; Alain, T.; Barbier, J. P. J. Chem. Soc. Dalton Trans, 2002, 30, 2660.
29 Coleman, W. M.; Taylor, L. T. Inorg. Chim. Acta, 1981, 53, L191.   DOI
30 Jerry March.; Advanced Organic Chemistry: Reactions, Mechanisms and Structure. McGraw Hill Book Company, New York, pp 238-245, 1968.
31 Koseoglu, F.; Kilic, E.; Uysal, D. Talanta, 1995, 42, 1875.   DOI