• 제목/요약/키워드: Newton algorithm

검색결과 382건 처리시간 0.02초

시간영역에서 가우스뉴튼법을 이용한 탄성파 파형역산 (Time Domain Seismic Waveform Inversion based on Gauss Newton method)

  • 신동훈;박창업
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2006년도 공동학술대회 논문집
    • /
    • pp.131-135
    • /
    • 2006
  • 본 논문에서는 가우스 뉴튼법을 이용한 중합전 탄성파 자료의 파형역산에 관한 연구를 수행하였다. 탄성파 파형역산에 가우스 뉴튼법을 적용하는 방법은 80년대에 제시되었으나 최근 들어서야 활발히 연구가 진행되고 있는데 이는 연산 능력과 기억용량의 한계에 기인한 것이다. 이를 극복하기 위해 본 연구에서는, 파동 전파 수치모의와 역산과정에서 각각 다른 크기의 격자간격을 사용하고, 필요한 시간영역의 파동전파 모사와 가상 진원의 근사를 통해 편미분 파형을 계산하였으며, 효과적으로 슈퍼컴퓨터를 활용하기 위해 병렬처리 기법을 사용하였다. 수치모의를 통해, 가우스 뉴튼법을 이용한 파형 역산의 수렴속도가 빠르고 정확한 것을 알 수 있었으며, 이를 통해 본 연구에서 제시한 방법의 실제 탄성파 자료를 이용한 역산에의 적용가능성을 확인하였다.

  • PDF

임피던스 단층촬영기의 정적 영상 복원 알고리즘 (A STATIC IMAGE RECONSTRUCTION ALGORITHM IN ELECTRICAL IMPEDANCE TOMOGRAPHY)

  • 우응제
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1991년도 춘계학술대회
    • /
    • pp.5-7
    • /
    • 1991
  • We have developed an efficient and robust image reconstruction algorithm for static impedance imaging. This improved Newton-Raphson method produced more accurate images by reducing the undesirable effects of the ill-conditioned Hessian matrix. We found that our electrical impedance tomography (EIT) system could produce two-dimensional static images from a physical phantom with 7% spatial resolution at the center and 5% at the periphery. Static EIT image reconstruction requires a large amount of computation. In order to overcome the limitations on reducing the computation time by algorithmic approaches, we implemented the improved Newton-Raphson algorithm on a parallel computer system and showed that the parallel computation could reduce the computation time from hours to minutes.

  • PDF

High Voltage MOSFET의 DC 해석 용 SPICE 모델 파라미터 추출 방법에 관한 연구 (A Study on the SPICE Model Parameter Extraction Method for the DC Model of the High Voltage MOSFET)

  • 이은구
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2281-2285
    • /
    • 2011
  • An algorithm for extracting SPICE MOS level 2 model parameters for the high voltage MOSFET DC model is proposed. The optimization method for analyzing the nonlinear data of the current-voltage curve using the Gauss-Newton algorithm is proposed and the pre-process step for calculating the threshold voltage and the mobility is proposed. The drain current obtained from the proposed method shows the maximum relative error of 5.6% compared with the drain current of 2-dimensional device simulation for the high voltage MOSFET.

유전자 알고리듬을 이용한 조류계산 (Load Flow Calculation Using Genetic Algorithm)

  • 김형철;이장무;차준민;최재석;권세혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.78-80
    • /
    • 2005
  • The load flow calculation is one of the most critical issues in electrical power systems. Generally, load flow has been calculated by Gauss-Seidel method and Newton-Raphson method but these methods have some problems such as non-convergence due to heavy load and initial value. In this paper, to overcome such problems, the power flow is calculated by genetic algorithm. At the heavy load, the solution for problem can not be obtained by the Newton-Raphson method. However, it can be solved in case of using genetic algorithm. In this paper, the strong point of this method would be demonstrated in application to an example system.

  • PDF

Application of Bacterial Foraging Algorithm and Genetic Algorithm for Selective Voltage Harmonic Elimination in PWM Inverter

  • Maheswaran, D.;Rajasekar, N.;Priya, K.;Ashok kumar, L.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.944-951
    • /
    • 2015
  • Pulse Width Modulation (PWM) techniques are increasingly employed for PWM inverter fed induction motor drive. Among various popular PWM methods used, Selective Harmonic Elimination PWM (SHEPWM) has been widely accepted for its better harmonic elimination capability. In addition, using SHEPWM, it is also possible to maintain better voltage regulation. Hence, in this paper, an attempt has been made to apply Bacterial Foraging Algorithm (BFA) for solving selective harmonic elimination problem. The problem of voltage harmonic elimination together with output voltage regulation is drafted as an optimization task and the solution is sought through proposed method. For performance comparison of BFA, the results obtained are compared with other techniques such as derivative based Newton-Raphson method, and Genetic Algorithm. From the comparison, it can be observed that BFA based approach yields better results. Further, it provides superior convergence, reduced computational burden, and guaranteed global optima. The simulation results are validated through experimental findings.

수직 다층구조의 대지저항률 영상복원을 위한 전극배열법의 비교 (Comparison of electrode arrays for earth resistivity image reconstruction of vertical multi layers)

  • 부창진;김호찬;강민제
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.149-155
    • /
    • 2018
  • 본 논문에서는 전기영상법(ET)을 이용하여 수직 다층구조 대지저항률을 영상복원 하였다. 일반적으로 접지 시공을 위한 대지 분석은 수평 다층 구조라는 가정 하에 행해지지만, 현실적으로는 지하구조가 수직 구조일 경우도 발생하게 된다. 여기에서는 수직 다층구조의 대지분석에 유리한 전극배열법을 찾아내기 위하여 전기영상법에 가장 널리 사용되는 Wenner, Schlumberger 그리고 쌍극자배열을 테스트하였다. ET영상복원에는 Gauss-Newton 역산 알고리즘이 이용되었다. RMS 오차 분석결과를 보면 Wenner 배열의 경우가 RMS 오차가 가장 적게 나타나는 것을 확인할 수 있었다.

A MASS LUMPING AND DISTRIBUTING FINITE ELEMENT ALGORITHM FOR MODELING FLOW IN VARIABLY SATURATED POROUS MEDIA

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권3호
    • /
    • pp.243-259
    • /
    • 2016
  • The Richards equation for water movement in unsaturated soil is highly nonlinear partial differential equations which are not solvable analytically unless unrealistic and oversimplifying assumptions are made regarding the attributes, dynamics, and properties of the physical systems. Therefore, conventionally, numerical solutions are the only feasible procedures to model flow in partially saturated porous media. The standard Finite element numerical technique is usually coupled with an Euler time discretizations scheme. Except for the fully explicit forward method, any other Euler time-marching algorithm generates nonlinear algebraic equations which should be solved using iterative procedures such as Newton and Picard iterations. In this study, lumped mass and distributed mass in the frame of Picard and Newton iterative techniques were evaluated to determine the most efficient method to solve the Richards equation with finite element model. The accuracy and computational efficiency of the scheme and of the Picard and Newton models are assessed for three test problems simulating one-dimensional flow processes in unsaturated porous media. Results demonstrated that, the conventional mass distributed finite element method suffers from numerical oscillations at the wetting front, especially for very dry initial conditions. Even though small mesh sizes are applied for all the test problems, it is shown that the traditional mass-distributed scheme can still generate an incorrect response due to the highly nonlinear properties of water flow in unsaturated soil and cause numerical oscillation. On the other hand, non oscillatory solutions are obtained and non-physics solutions for these problems are evaded by using the mass-lumped finite element method.

The Null Distribution of the Likelihood Ratio Test for a Mixture of Two Gammas

  • Min, Dae-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권2호
    • /
    • pp.289-298
    • /
    • 1998
  • We investigate the distribution of likelihood ratio test(LRT) of null hypothesis a sample is from single gamma with unknown shape and scale against the alternative hypothesis a sample is from a mixture of two gammas, each with unknown scale and unknown (but equal) scale. To obtain stable maximum likelihood estimates(MLE) of a mixture of two gamma distributions, the EM(Dempster, Laird, and Robin(1977))and Modified Newton(Jensen and Johansen(1991)) algorithms were implemented. Based on EM, we made a simple structure likelihood equation for each parameter and could obtain stable solution by Modified Newton Algorithms. Simulation study was conducted to investigate the distribution of LRT for sample size n = 25, 50, 75, 100, 50, 200, 300, 400, 500 with 2500 replications. To determine the small sample distribution of LRT, I considered the model of a gamma distribution with shape parameter equal to 1 + f(n) and scale parameter equal to 2. The simulation results indicate that the null distribution is essentially invariant to the value of the shape parameter. Modeling of the null distribution indicates that it is well approximated by a gamma distribution with shape parameter equal to the quantity $0.927+1.18/\sqrt{n}$ and scale parameter equal to 2.16.

  • PDF

선형배열음원의 최적 지향성합성 (Optimal Directivity Synthesis of Linear array Sources)

  • 정의철;김상윤;김온;조기량
    • 한국통신학회논문지
    • /
    • 제37권4A호
    • /
    • pp.250-259
    • /
    • 2012
  • 본 논문에서는 반복계산에 따라 비선형 최소점을 탐색하는 최적화 알고리즘의 선택이 선형배열음원의 지향성합성에 미치는 영향을 목적지향성의 설계사양에 대한 만족도, 수렴성, 그리고 적응성의 면에서 비교 검토하였다. 지향성합성은 최적화 알고리즘인 DFP(Davidon-Fletcher-Powell)법과 BFGS (Broyden-Fletcher-Goldfarb-Shanno)법을 이용하였으며, 준이상 빔과 회전 빔, 그리고 멀티 빔을 목적지향성으로 설정하였다. 수치계산 결과, 지향성합성에 대한 준뉴톤법의 유효성 확인과 함께 수치계산 과정에서 발생된 문제점에 대한 해결 방법도 제시하였다.

평면 곡선의 교점 계산에 있어 곡선 특성화, 분할, 근사, 음함수화 및 뉴턴 방법을 이용한 Mix-and-Mntch알고리즘 (A Planar Curve Intersection Algorithm : The Mix-and-Match of Curve Characterization, Subdivision , Approximation, Implicitization, and Newton iteration)

  • 김덕수;이순웅;유중형;조영송
    • 한국CDE학회논문집
    • /
    • 제3권3호
    • /
    • pp.183-191
    • /
    • 1998
  • There are many available algorithms based on the different approaches to solve the intersection problems between two curves. Among them, the implicitization method is frequently used since it computes precise solutions fast and is robust in lower degrees. However, once the degrees of curves to be intersected are higher than cubics, its computation time increases rapidly and the numerical stability gets worse. From this observation, it is natural to transform the original problem into a set of easier ones. Therefore, curves are subdivided appropriately depending on their geometric behavior and approximated by a set of rational quadratic Bezier cures. Then, the implicitization method is applied to compute the intersections between approximated ones. Since the solutions of the implicitization method are intersections between approximated curves, a numerical process such as Newton-Raphson iteration should be employed to find true intersection points. As the seeds of numerical process are close to a true solution through the mix-and-match process, the experimental results illustrates that the proposed algorithm is superior to other algorithms.

  • PDF