DOI QR코드

DOI QR Code

Optimal Directivity Synthesis of Linear array Sources

선형배열음원의 최적 지향성합성

  • 정의철 (한국공항공사) ;
  • 김상윤 (전남대학교 대학원 전자통신공학과) ;
  • 김온 (전남대학교 해양기술학부) ;
  • 조기량 (전남대학교 전기.전자통신.컴퓨터공학부)
  • Received : 2011.12.12
  • Accepted : 2012.03.30
  • Published : 2012.04.30

Abstract

This paper compared and investigated the choice of optimal algorithm affects on the directivity synthesis of linear array in the satisfaction to the design specification of the desired directivity, convergence characteristic, and adaptability. Optimal algorithms use a quasi-Newton method(DFP and BFGS method) for realizing the desired directivity, used a quasi-ideal beam, steering beam, and a multi-beam, chosen as desired directivity. In the numerical result, this paper verified the effectiveness of the quasi-Newton method to the directivity synthesis, and offered a solving approach of occurred problems in the numerical simulation process.

본 논문에서는 반복계산에 따라 비선형 최소점을 탐색하는 최적화 알고리즘의 선택이 선형배열음원의 지향성합성에 미치는 영향을 목적지향성의 설계사양에 대한 만족도, 수렴성, 그리고 적응성의 면에서 비교 검토하였다. 지향성합성은 최적화 알고리즘인 DFP(Davidon-Fletcher-Powell)법과 BFGS (Broyden-Fletcher-Goldfarb-Shanno)법을 이용하였으며, 준이상 빔과 회전 빔, 그리고 멀티 빔을 목적지향성으로 설정하였다. 수치계산 결과, 지향성합성에 대한 준뉴톤법의 유효성 확인과 함께 수치계산 과정에서 발생된 문제점에 대한 해결 방법도 제시하였다.

Keywords

References

  1. A. Bhavani Sankar, D Kumar, and K Seethalakshmi, "Performance Study of Various Adaptive Filter Algorithms for Noise Cancellation in Respiratory Signals", Signal Processing : An International Journal(SPIJ), 4(5), pp. 267-278. 2010.
  2. A. M. Pasqual, and J. Roberto, "A Comparative Study of Platonic Solid Loudspeakers as Directivity Controlled Sound Sources", Proc. of the 2nd International Symposium on Ambisonics and Spherical Acoustics, May, 2010.
  3. M. Abo-Zahhad, S. M. Ahmed, N. Sabor, and A. F. Al-Ajlouni, "The Convergence Speed of Single- and Multi-Objective Immune Algorithm Based Optimization Problems", Signal Processing : An International Journal (SPIJ), 4(5), pp. 247-266. 2010.
  4. A, Madkour, M. A. Hossain, K. P. Dahal, and H. Yu, "Intelligent Learning Algorithms for Active Vibration Control", IEEE Trans. Syst., Man, Cybern., 37(5), pp. 1022-1033, September 2007.
  5. 笹倉豊喜, "超音波送受波器の最適設計", コンピュートロール 39, pp. 106-112. 1992.
  6. K. C. Park, Y. Kagawa, T. Takao, K. R. Cho, "Optimization of the Frequency Characteristics in SAW Filter Design", Inverse Problem in Engineering, Vol. 8, pp. 473-493. April 2000. https://doi.org/10.1080/174159700088027742
  7. 森 正武, "數値計算プログラミング", 岩波書店. 1988.
  8. B. Widrow, S. D. Sterns, "Adaptive signal processing", Prentice-Hall. 1985.
  9. 小野寺 嘉孝, 杉原 正顕, 殿塚 勲, 森 正武, 小柳 義夫, 戸嶋 信幸, 長谷川 秀彦, "Fortran 77による数値計算ソフトウェア", 丸善株式會社, 1989.
  10. 茨木俊秀, 福島雅夫, "最適化プログラミング", 岩波書店. 2005.
  11. Wai-Ki Ching, Ho-Yin Leung, Nam-Kiu Tsing, Shu-Qin Zhang, "A Genetic Algorithm for Optimal Control of Probabilistic Boolean Networks", The 2nd International Symposium on Optimization and Systems Biology, pp. 29-35, October 2008.
  12. 土屋隆生, 河野 宏, 加川幸雄, "超音波送受波器の最適指向性合成シミュレーション", 日本シミュレーション學會誌, 12(1), pp. 61-69, 1993.