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ABSTRACT

We have developed an efficient and robust image
reconstruction algorithm for static impedance imaging. This
improved Newton-Raphson method produced more accurate
images by reducing the undesirable effects of the ili-
conditioned Hessian matrix. We found that our electrical
impedance tomography (EIT) system could produce two-
dimensional static images from a physical phantom with 7%
spatial resolution at the center and 5% at the periphery.

Static EIT image reconstruction requires a large amount of
computation. In order to overcome the limitations on reducing
the computation time by algorithmic approaches, we
implemented the improved Newton—Raphson algorithm on a
parallel computer system and showed that the parallel
computation could reduce the computation time from hours to
minutes.

INTRODUCTION

In electrical impedance tomography (EIT), we inject
currents and measure voltages using electrodes placed on the
boundary of a subject. Then, using the boundary current—
voltage measurement, we reconstruct a cross-sectional image
of resistivity distribution. Webster [4] described various
medical and geophysical applications of EIT.

In static impedance imaging, the absolute values of a cross-
sectional resistivity distribution are reconstructed. Since current
flow is a function of the unknown resistivity distribution, the
static impedance imaging problem is nonlinear and requires an
iterative algorithm. The modified Newton-Raphson method by
Yorkey et al. {6} has been suggested as the most sophisticated
static image reconstruction algorithm. This method shows good
convergence characteristics and recon: tructs almost perfect
images when no error is involved in the modeling and
measurement, However, when modeling error and
measurement noise are present and when the number of
elements (pixels) is large for good spatial resolution, the
performance of this method deteriorates rapidly and produces
noisy images. Also when a large number of elements is used,
the image reconstruction requires an unreasonably long
computation time.

Isaacson {3] and Gisser et al. [2] proposed the optimal
current injection method where they inject patterns of current
through all electrodes. This method improved the quality of
static images when combined with the modified Newton-
Raphson method. However, due to various sources of error
(modeling error, measurement noise, computational error, etc.),
static imaging has been tried mostly on computer simulations.

OVERVIEW OF EIT SYSTEM

We have developed a 32-electrode, 12-bit EIT system
based on a Macintosh Il computer. Figure 1 shows the block
diagram of the system. As summarized in Fig. 1, we calculate
the optimal patterns of injection currents and use 32 current
sources to inject them. For each pattern of injection current, we
measure the resulting boundary voltage on the subject using 32
voltage electrodes and a specially designed digital voltmeter.
We use the FEM (Finite Element Method) fo calculate the
boundary voltage of the computer model due to the same
injection currents, When we initially assume a certain
resistivity distribution for the computer model, the measured
voltage and the computed voltage are not the same mainly
because of the differences in resistivity distributions. Assuming
that the computer model is the correct geometrical
representation of the subject including the electrode
configuration, we change the resistivity distribution of the
computer model until we minimize the error between the
measured and computed voltage. This approach for static EIT
image reconstruction requires a solution of a nonlinear
minimization problem.

Figure | shows that the static EIT image reconstruction
problem is equivalent to a system identification problem using
nonlinear minimization techniques. We can describe the
problem in a general sense as follows:

Min Max ®(p;c;e) (1)
p ce

where ®(p ; ¢ ; €) is the objective function (error signal) which
indicates the difference between the resistivity distribution of

the model and that of the subject, p is the resistivity
distribution of the model, ¢ is the injection current pattem, and
e is the electrode configuration. An efficient EIT system
requires a measurement method including injection current
patterns, electrode size, position, etc. which maximizes the
objective function or distinguishability [3). Given the
measurement method, we need an algorithm by which we
adjust the resistivity distribution of the model so that the
objective function is minimized.

FORWARD SOLVER

In order to solve Eq. (1), we need to solve forward
problems. In EIT, the forward problem is to compute boundary
voltages or currents of a subject with a certain resistivity
distribution due to given injection currents or applied voltages.
‘When we inject current or apply voltage to the thorax, the
current-voltage relationship is determined by Poisson's
equation with boundary conditions. For a nonhomogeneous,
anisotropic and irregularly shaped object such as the thorax, an
analytic solution of the equation is impossible. Therefore, we
use numerical techniques such as the finite element method
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(FEM) or finite difference method (FDM). Since the FEM is
advantageous in modeling an arbitrary shaped object, we
construct a model of the subject using the FEM.

We have developed a finite element software package
including interactive graphical finite element mesh generators
and efficient sparse matrix and vector algorithms for solving a
sparse linear system of equations. Though this software
package is a general Eurpose finite element analysis tool, we
customized the package with special considerations for
impedance imaging. Therefore, after we design a finite element
mesh including boundary elements and electrode
configurations, we can compute boundary voltages or currents
for any given resistivity distribution and injection currents or
applied voltages.

OPTIMAL MEASUREMENT METHOD

We solve Eq. (1) in two steps. This section is about the
Max part of Eq. (1) for which the solution provides the
electrode configuration e and the optimal injection current ¢.
Isaacson [3] defined the distinguishability of an injection
current pattern ¢ as the ability to distinguish two different
resistivity distributions using the boundary voltage
measurements. Therefore, the distinguishability d is
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where vy and v, are the boundary voltages from resistivity

distributions Q) and Q3, respectively. In EIT static image
reconstruction, we use the error signal which is the difference
between the computed voltage from the computer model
(solution of a forward problem) and the measured voltage from
the subject. Since the error signal is dependent upon the
injection current as well as the difference in resistivity
distributions between the model and the real subject, we need
to study the measurement method in order to maximize the
distinguishability or signnl-tomoise ratio (SNR).

From the definition of the distinguishability, we can
develop algorithms which provide the optimal injection current
patterns to maximize the error signal or distinguishability.
When we use E electrodes to inject currents into a subject, the
maximal distinguishability is achieved by equally spacing large
electrodes in the imaging plane and by injecting the optimal
current pattems.

We have developed a method to compute all optimal
curmrent patterns using Walsh functions and a data synthesis
method where boundary voltage values for any injection
current pattemns are derived from a complete set of boundary
voltage measurements using Walsh functions as injection
current pattems [5).

NONLINEAR MINIMIZATION METHODS

In order to solve the Min part of Eq. (1), we use a nonlinear
minimization algorithm with the resistivity distribution of the
computer model p as a variable. Therefore, the reconstruction
algorithm should change the resistivity distribution of the
computer modei in a systematic way so that the objective
function is minimized.

We assume a FEM model with N nodes, R pixels, E
electrodes, and P pattems of injection currents.

Objective function
Given e and ¢ in Eq. (1), we formulate the objective
function of our minimization problem as follows:

M
®p) =3 Swiri? &)

i=t

where p is an even integer, r; = fi(p) — vi, M = EP, and w; is a

weighting function. This is the weighted pth objective function
and the minimization problem can be stated as a nonlinear least
pth minimization problem. For a given ¢ (injection current

pattern), v; is the ith voltage measurement and fi(p) is the
corresponding voltage value computed from the computer
model using the FEM.

The objective function is computed by a set of boundary
voltage measurements from a subject and another set of
boundary voltage values of the computer model which is
computed by P repeated solutions of a linear system of
equations derived by the FEM.

Compulation of the Jacobian and derivative

Yorkey et al. [6] described the method of computing the
Jacobian matrix J and the derivative of the objective function g
for p =2 and w; = 1 for all i. Here, we derive more general
formulas for J and g. From Eq. (3),

g=V,0=JTWr @)

where the Jacobian matrix J,,, = {Varp), W = diag(wy wa ...
wp), and the residual vector r = [ry ry ... ry]T. Now we define
J=JWI2and 7 = Wiz, Then,

g=JTF. 5)

Computation of the Hessian matrix
From Eq. (4), the Hessian matrix is

H=Vy(V,0) = JTW] + M. (6)

In Eq. (6), we ignore the second term M which contains the
residuals and their second derivatives since they are relatively
small compared to the first term. Then, the approximate
Hessian matrix is

H=JTwW) =J75. 0
The Ill-conditioning problem

We found that the Jacobian matrix J and hence the
approximate Hessian matrix H are ill-conditioned for the
following reasons.

(A) Crosscorrelation among all pixels

In EIT, all pixel values (resistivities) affect all boundary
voltage values. If none of the pixels are correlated, the Hessian
matrix would be a diagonal matrix and the steepest descent
direction would be the optimal search direction on a circular
contour of the objective function. However, crosscorrelations
among all pixels skew the contour of the objective function
into a narrow hyperellipsoid which indicates a very ill-
conditioned Hessian matrix.

(B) Size of model (number of pixels)

We can only use boundary voltage values in EIT, and the
sensitivity of the boundary voltage due to each pixel changes
greatly depending on the location of the pixel. The boundary
voltage is very sensitive to any change in the resistivity value
of a pixel (element in a mesh) near the boundary and very
insensitive to that of center element. Therefore, this large
variation in the sensitivity causes ill-conditioning and requires
a careful scaling of the matrix.

Improved Newton-Raphson method

In the modified Newton-Raphson method using the
Levenberg—Marquardt method and regularization, the
resistivity update at the kth iteration is obtained by solving the

following linear system of equations known as the normal
equation {1]:

(JJ+ A+ phiap k=g =JTF. ®)
Then, the new resistivity distribution at the kth iteration is
prl=pkyApk 9

However, as we discussed before, Ap* is very sensitive to any
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noise due to the large condition number of H. Therefore, it is
important that we avoid the direct use of the ill-conditioned
Hessian matrix..

Eq. (8) can be stated differently as follows:

[;: fvs ][Zp*]:[EF] (10)

where orv = A+ yand § = diag( Hyy f; ... figg). Though Eq.
(10) is larger than Eq. (8), the augmented matrix is sparse due

to two diagonal matrices o and vS. We solve Eq. (10) using
the preconditioned conjugate gradient method.

PARALLEL IMPLEMENTATIONS

On a 16-MHz Macintosh Il computer, one iteration of the
improved Newton-Raphson method using a mesh with 5%
spatial resolution takes about 20 or 30 min using various
algorithmic techniques to reduce the computation time.

Computation time using a single processor
Let 7 be the total number of nonzeros in the sparse master

matrix from the FEM model, then = O(N! + 1) where y= 0.4

in most cases [4]. Then, the minimal number of arithmetic
operations involved in the sparse LU factorization and
substitution are O(N! +27) = O(N!-8) and O(N! + 1) = O(NV1:4),
respectively.

In the improved Newton-Raphson method, we do not
compute the matrix H from J explicitly. Therefore, the total
amount of computation for one iteration of the improved
Newton-Raphson method is

Cinr = O(N1:3) + PR O(N14) + O((M + R)2). )

Parallel computation

We have implemented the improved Newton-Raphson
methods on a parallel computer system, the Symmetry from
Sequent Computer Systems, Inc., to confirm the feasibility of
parallel computations in EIT. The Symmetry system has 20
processors with 256 Mbyte of virtual address space per
processor. All processors are tightly coupled and can access
shared data structure in memory. We used Sequent parallel C
language on the DYNIX operating system.

The computation of the Jacobian matrix J requires PR

times the repeated solutions of a sparse N x N linear system of

equations with different right-hand-sides. Once the matrix is
factorized, C processors can start substitution operations
simultaneously. Therefore, by using C processors, we can
reduce the computation time for computing the Jacobian matrix
by a factor of less than 1/C.

In the improved Newton-Raphson method, we do not
compute H which requires O((MR)3/?) computations. And
instead of solving the R x R dense linenr system of equations

(Eq. (8)) with O(R3), we solve the (R + M) x (R + M) sparse
linear system of equations (Eq. (10)) u: ing the preconditioned
conjugate gradient method which is eaiily parallelized. Then,
the total computation for the improsed Newton-Raphson
method using C processors is

CiNr = O(N1-8) + PR O(N4)/C + O(R + M)2)/C.  (12)

Figure 2 shows a reduction in the computation time by
using many processors. The results showed a reduction in the
computation time within a certain limit as we increase the
number of processors. We conclude that the improved
Newton-Raphson methad is highly parallelizable and the use
of parallel computers such as Transputers may solve the
computational problems in static impedance imaging.

STATIC IMAGES

. Figure 3 shows reconstructed static images from the two-
dimensional physical phantom with different sizes of
conductors and insulators. We made models of the lung

(1200 Q-cm), heart (150 Q-cm), spine (2000 Q-cm), and tissue

(300 ©-cm) by mixing agar powder and NaCl with boiling
water. We constructed two models of the human thorax by
placing the agar objects in the physical phantom as shown in
Fig. 4(a) and (c). Figures 4(b) and (d) show the reconstructed
static images of the physical phantom.

CONCLUSIONS

We have developed the improved Newton-Raphson
method for static impedance imaging. We implemented the
improved Newton—Raphson method on a parallel computer
system and showed that parallel computation is very promising
in EIT image reconstruction.

Static images reconstructed from a two-dimensional
physical phantom showed that we can achieve 5% and 7%
spatial resolution at the periphery and at the center,
respectively.
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Figure 1 Block diagram of EIT system.
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Figure 2 Computation times for a single iteration of the
improved Newton—Raphson method. CG is the time for solving
Eq. (20) by the conquale gradient method, J is the time for
computing J, and Total is the total computation time.
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Figure 3 Static images reconstructed from a physical
phantom using the improved Newton-Raphson method. (a)
True image and (b) reconstructed image.
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Figure 4 (a) and (c) True images of the physical phantom
which model the human thorax using agar objects. (b) and (d)
Reconstructed images of (a) and (c), respectively.
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