• Title/Summary/Keyword: New policy

Search Result 5,848, Processing Time 0.032 seconds

A Study on the Section 55 of Marine Insurance Act, 1906(Cargo Exclusions) (영국해상보험법 제55조에 관한 연구)

  • Park, Sung-Cheul
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.21
    • /
    • pp.41-54
    • /
    • 2003
  • The MIA 1906 is a very important rule for the practitioner in Korea since it is often selected as the governing law under the contract of cargo insurance. And we are using both the S.G policy and the new MAR policy. The new MAR policy has the basically different form of cover compared with the S.G policy. So we are a little confused whether some risks are covered or not under the selected clauses. The author considers which risks are covered or not under the specific clauses and compares the Institute cargo clauses with the MIA 1906.

  • PDF

The New Landscape of Trade Policy and Korea's Choices

  • Petri, Peter A.
    • East Asian Economic Review
    • /
    • v.17 no.4
    • /
    • pp.333-359
    • /
    • 2013
  • Two mega-regional negotiations are changing the landscape of Asia Pacific trade policy: an Asian track centered on ASEAN (the Regional Comprehensive Economic Partnership or RCEP), and a Trans-Pacific track centered on the Trans-Pacific Partnership (TPP) among 12 economies, including the United States, which Korea is expected to join. Modeling results suggest that both would generate substantial benefits for Korea and the global economy. From Korea's viewpoint, the agreements would establish new FTAs with China, Japan and smaller economies, improve the utilization of FTAs by permitting the regional cumulation of inputs, and help to upgrade some Korean FTAs to more rigorous standards. By participating in these agreements, Korea could also help to guide them toward inclusive, high-quality regional outcomes. As one of the region's most open and agile economies, Korea has a large stake in regional integration and would be well advised to pursue both tracks.

Economic Feasibiltiy Analysis of Renewable Energy of Green Home Policy (그린홈사업을 위한 신재생에너지 기술의 경제적 타당성 평가)

  • An, Hyung-Jun;Heo, Eun-Nyeong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.196-199
    • /
    • 2009
  • Korean government decided to give a subsidy for renewable energy system of green home. This policy will make an appeal to consumers. But For success of this policy, Economic benefit of consumer is essential. In this study, benefit and cost is seperated to consumer part and government part, respectively. consumer's benefit is energy saving and asset value increment. Consumer's cost is real input money except government's subsidy. Government's benefit is consist of energy import reduction, carbon discharge reduction and new production increment, As a result, the government subsidy will not so enough to activate the green home. PV system for the korean general apartment has the payback period of 19 years. So, For the dissemination of renewable energy of green home, more strong subsidy policy and more economic technoloy development is requested.

  • PDF

Deep Reinforcement Learning of Ball Throwing Robot's Policy Prediction (공 던지기 로봇의 정책 예측 심층 강화학습)

  • Kang, Yeong-Gyun;Lee, Cheol-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.398-403
    • /
    • 2020
  • Robot's throwing control is difficult to accurately calculate because of air resistance and rotational inertia, etc. This complexity can be solved by using machine learning. Reinforcement learning using reward function puts limit on adapting to new environment for robots. Therefore, this paper applied deep reinforcement learning using neural network without reward function. Throwing is evaluated as a success or failure. AI network learns by taking the target position and control policy as input and yielding the evaluation as output. Then, the task is carried out by predicting the success probability according to the target location and control policy and searching the policy with the highest probability. Repeating this task can result in performance improvements as data accumulates. And this model can even predict tasks that were not previously attempted which means it is an universally applicable learning model for any new environment. According to the data results from 520 experiments, this learning model guarantees 75% success rate.

An Optimal Block Replacement Policy Using Items with Different Reliability

  • Lie, Chang-Hoon;Bae, Moon-Sik;Chun, Young-Ho
    • Journal of the military operations research society of Korea
    • /
    • v.10 no.2
    • /
    • pp.61-73
    • /
    • 1984
  • A block replacement policy using items with different reliability is discussed. We divide system unit failure modes into two modes and use less reliable unit when operating unit fails near the planned preventive replacement time. In this policy, item A has two failure modes. Mode-1 failure is removed by minimal repair, mode-2 failure by replacement. If mode-2 failure of item A happens in (0, $T-{\delta}$), failure item A is replaced by new item A. If mode-2 failure of item A happens in ($T-{\delta}$, T), failure item A is replaced by new item B. Item B should be cheaper and less durable than item A. Under this policy, we determine the preventive replacement interval $T^{*}$ and the interval ${\delta}^{*}$ of item B replacement which minimize the cost rate per unit time.

  • PDF

Condition based age replacement policy of used item

  • Lim, J.H.;Lipi, T.F.;Zuo, M.J.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.131-143
    • /
    • 2011
  • In most of literatures of age replacement policy, the authors consider the case that a new item starts operating at time zero and is to be replaced by new one at time T. It is, however, often to purchase used items because of the limited budget. In this paper, we consider age replacement policy of a used item whose age is $t_0$. The mathematical formulas of the expected cost rate per unit time are derived for both infinite-horizon case and finite-horizon case. For each case, we show that the optimal replacement age exists and is finite and investigate the effect of the age of the used item.

  • PDF

A Study on Policy Paradigms for Korean Children (아동정책의 현재와 미래)

  • Lee, Jae-Yeon;Park, Young-Yae;Moon, Hyuk-Jun
    • Korean Journal of Child Studies
    • /
    • v.31 no.3
    • /
    • pp.1-16
    • /
    • 2010
  • The purpose of this study was to investigate new directions and paradigms for child policy in Korea. The paper also discusses the theoretical background of the influence of such policies upon the lives of children. Any new paradigm thus established should be based on the UN Convention on the Rights of the Children (CRC), and in addition, appropriate government support should be provided for all families and children regardless of their socio-economic status. The goal of such a child policy is to promote and protect the well-being of children in Korea and inspire excellence among those adults responsible for protecting and nurturing these children. Clearly, more effort and attention needs to be expended in order to achieve these aims.

The ($\textsc{k}, t_p$) Replacement Policy for the System subject to Two Types of Failure

  • Lee, Seong-Yoon
    • Journal of the military operations research society of Korea
    • /
    • v.25 no.2
    • /
    • pp.144-157
    • /
    • 1999
  • In this paper, we consider a new preventive replacement policy for the system which deteriorates while it is in operation with an increasing failure rate. The system is subject to two types of failure. A type 1 failure is repairable while a type 2 failure is not repairable. In the new policy, a system is replaced at the age of $t_p$ or at the instant the$\textsc{k}^{th}$ type 1 failure occurs, whichever comes first. However, if a type 2 failure occurs before a preventive replacement is performed, a failure replacement should be made. We assume that a type 1 failure can be rectified with a minimal repair. We also assume that a replacement takes a non-negligible amount of time while a minimal repair takes a negligible amount of time. Under a cost structure which includes a preventive replacement cost, a failure replacement cost and a minimal repair cost, we develop a model to find the optimal ($\textsc{k},t_p$) policy which minimizes the expected cost per unit time in the long run while satisfying a system availability constraint.

  • PDF

A Note on Age Replacement Policy of Used Item at Age $t_0$

  • Lim, J.H.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.1
    • /
    • pp.33-42
    • /
    • 2009
  • In most of literatures of age replacement policy, the authors consider the case that a new item starts operating at time zero and is to be replaced by new one at time T. It is, however, often to purchase used items because of the limited budget. In this paper, we consider age replacement policy of a used item whose age is $t_0$. The mathematical formulas of the expected cost rate per unit time are derived for both infinite-horizon case and finite-horizon case. For each case, we show that the optimal replacement age exists and is finite and investigate the effect of the age of the used item.

  • PDF

Cost Analysis Model for Periodic Maintenance Policy with Maintenance Cost Factor (보전비용요소를 고려한 정기보전정책의 비용분석모델)

  • 김재중;김원중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.287-295
    • /
    • 1995
  • This paper is concerned with cost analysis model in periodic maintenance policy. Generally periodic maintenance policy in which item is repaired periodic interval times. And in the article minimal repair is considered. Mimimal repair means that if a unit fails, unit is instantaneously restored to same hazard rate curve as before failure. In the paper periodic maintenance policy with minimal repair is as follows; Operating unit is periodically replaced in periodic maintenance time, if a failure occurs between minimal repair and periodic maintenance time, unit is replaced by a new item until tile periodic maintenance time comes. Also unit undergoes minimal repair at failures in minimal-repair-for-failure interval. Then total expected cost per unit time is calculated according to scale parameter of failure distribution. Maintenance cost factors are included operating, fixed, minimal repair, periodic maintenance and new item replacement cost. Numerical example is shown in which failure time of system has weibull distribution.

  • PDF