• Title/Summary/Keyword: New designer

Search Result 578, Processing Time 0.028 seconds

A preference­based design metric in dynamic robust design (설계자 선호도를 고려한 동적 시스템의 강건설계법)

  • 김경모
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • Dynamic robust design has been regarded as the most powerful design methodology for improving product quality, Dynamic SN ratio adopted in dynamic robust design combines two major quality attributes, the variability around the linear function and the slope of the linear function, into a single design metric. The principal shortcoming associated with the dynamic SN ratio is that the metric is independent of designer's preferences for the quality attributes due to priori sets of attribute tradeoff values inherent in it. Therefore, a more rigorous preference­based design metric to accurately capture designer's intent and preference is needed. A new design metric that can be used in dynamic robust design is proposed. The effectiveness of the proposed design metric is examined with the aid of a demonstrative case study and the results are discussed.

A Study on the Development of Intelligent Supplementary Feature Designer(ISFD) in Injection Molding (사출성형제품 부형상의 지적 설계에 관한 연구)

  • Gang, Seong-Nam;Heo, Yong-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.164-173
    • /
    • 2001
  • The configuration of injection molded part can be classified into primary feature and supplementary feature. Even though supplementary features such as ribs, snap fits and bosses make mold more complicated, which cause the increasement of the mold cost, supplementary features should be attached to primary features because of assembly, reinforcement, moldability and other functional purposes. But it is not easy for novice designers to design them appropriately because of the profound knowledge related to Injection molding. In this paper, the intelligent design tool called ISFD(Intelligent Supplementary Feature Designer) which supplies easy, simple, time and cost-effective design method has been studied and developed. A knowledge-based design system is a new tool which enables the concurrent design and CIM with integrated and balanced design decisions at the initial design stage of injection molding.

  • PDF

Optimal Model Design of Software Process Using Genetically Fuzzy Polynomial Neyral Network (진화론적 퍼지 다항식 뉴럴 네트워크를 이용한 소프트웨어 공정의 최적 모델 설계)

  • Lee, In-Tae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2873-2875
    • /
    • 2005
  • The optimal structure of the conventional Fuzzy Polynomial Neural Networks (FPNN)[3] depends on experience of designer. For the conventional Fuzzy Polynomial Neural Networks, input variable number, number of input variable, number of Membership Functions(MFs) and consequence structures are selected through the experience of a model designer iteratively. In this paper, we propose the new design methodology to find the optimal structure of Fuzzy Polymomial Neural Network by using Genetic Algorithms(GAs)[4, 5]. In the sequel, It is shown that the proposed Advanced Genetic Algorithms based Fuzzy Polynomial Neural Network(Advanced GAs-based FPNN) is more useful and effective than the existing models for nonlinear process. We used Medical Imaging System(MIS)[6] data to evaluate the performance of the proposed model.

  • PDF

Multi-Characteristic Robust Design Methodology Based on Designer's Preference (설계자 선호도를 고려한 다특성 강건설계법)

  • 김경모
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.1
    • /
    • pp.47-61
    • /
    • 2001
  • The ever increasing demands for enhanced competitiveness of engineered products require a "designing-in-quality" strategy that can effectively and efficiently incorporate multiple design objectives into design. Robust design can be viewed as a multi-characteristic design problem requiring tradeoffs between mean and variance characteristics. Firstly this paper analyzes the intrinsic preference of the traditional SN ratio on mean and variance, and secondly presents a new design metric for a robust design using concepts from utility theory to accurately capture designer′s intent and preference on mean and variance. The steps to apply the proposed design metric as the robust design criterion in an orthogonal array based engineering experimentation is presented with the aid of a demonstrative case study. The performance of the proposed design metric is tested, and the results are discussed.

  • PDF

A Study on the Driving Force of Louis Vuitton's Design Innovation (루이비통 디자인 혁신의 원동력에 관한 연구)

  • Kim, Ji-Young
    • The Research Journal of the Costume Culture
    • /
    • v.17 no.4
    • /
    • pp.691-708
    • /
    • 2009
  • The purpose of this study was to find the methodology of design plan that could raise the brand power by looking around the driving force of the design innovation through the case study of Louis Vuitton which has been evaluated to be successful in brand revolution by designer Marc Jacobs. Research methods were theoretical studies looking for various analysis and valuations about Louis Vuitton's design innovation and analysis about articles in International Herald Tribune and New York Times. Driving force of Louis Vuitton's design innovation could be summarized as designer's creativity and full supports for designers, establishment of BI by strategic cooperation between design and marketing parts, active design plans by collaboration with modern artists, existence of Logo as a symbol of brand, business mind pursuing adventures and dreams, and directors' artistic sensitivity and supports for culture and art.

  • PDF

Fuzzy Preference Based Interactive Fuzzy Physical Programming and Its Application in Multi-objective Optimization

  • Zhang Xu;Huang Hong-Zhong;Yu Lanfeng
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.731-737
    • /
    • 2006
  • Interactive Fuzzy Physical Programming (IFPP) developed in this paper is a new efficient multi-objective optimization method, which retains the advantages of physical programming while considering the fuzziness of the designer's preferences. The fuzzy preference function is introduced based on the model of linear physical programming, which is used to guide the search for improved solutions by interactive decision analysis. The example of multi-objective optimization design of the spindle of internal grinder demonstrates that the improved preference conforms to the subjective desires of the designer.

Robust Design of an Injection Molding Process Considering Integrated Desirability (통합 만족도를 고려한 사출성형공정의 강건 설계)

  • Kim, Kyung-Mo;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.34-41
    • /
    • 2019
  • Warpage and weld line are two major cosmetic defects in the injection molding process. These defects are very sensitive to uncontrollable parameters within the process. The optimization of the design variables can be treated with the use of robust designs. Therefore, in order to minimize the warpage and weld line, a special design method to diminish defects is required. In this study, a new robust design method using designer preference to achieve the optimal robust design conditions in the injection molding process is proposed. The effectiveness of the proposed method is shown with an example of the part of warpage and weld line.

Single-bit digital comparator circuit design using quantum-dot cellular automata nanotechnology

  • Vijay Kumar Sharma
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.534-542
    • /
    • 2023
  • The large amount of secondary effects in complementary metal-oxide-semiconductor technology limits its application in the ultra-nanoscale region. Circuit designers explore a new technology for the ultra-nanoscale region, which is the quantum-dot cellular automata (QCA). Low-energy dissipation, high speed, and area efficiency are the key features of the QCA technology. This research proposes a novel, low-complexity, QCA-based one-bit digital comparator circuit for the ultra-nanoscale region. The performance of the proposed comparator circuit is presented in detail in this paper and compared with that of existing designs. The proposed QCA structure for the comparator circuit only consists of 19 QCA cells with two clock phases. QCA Designer-E and QCA Pro tools are applied to estimate the total energy dissipation. The proposed comparator saves 24.00% QCA cells, 25.00% cell area, 37.50% layout cost, and 78.11% energy dissipation compared with the best reported similar design.

A kansei engineering method to convert subjective customer requirements into product design functions (감성공학을 이용한 미래지향적 신제품개발에 관한 연구)

  • 이순요;권규식
    • Journal of the Ergonomics Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.29-43
    • /
    • 1993
  • This paper presents a conceptual approach to convert customer requirements expressed in ordinary language into a form of qualitative and quantitative functions for developing new products. This approach attempts to combine the concepts of the value engineering and the Kansei engineering. It emphasizes that customer require- ments should be interpreted and reflected on the design of new product. Specific are discussed for extracting subjective requirements and transforming them into qualitative and quantitative functions for product design. This approach is expected to provide the product designer with a systematic efficient tool for incorporating subjective requirements into a product design.

  • PDF

A Design of Instruction-Set Based Simulator of Processor for Embedded Application System (내장형 제어용 프로세서를 위한 명령어 기반 범용 시뮬레이터 개발)

  • 양훈모;정종철;김도집;이문기
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.357-360
    • /
    • 2001
  • As SOC design methodology becomes popular, processors, the essential core in embedded system are required to be designed fast and supported to customers with expansive behavior description. This paper presents new methodology to meet such goals with designer configurable instruction set simulator for processors. This paper proposes new language called PML(Processor Modeling Language), which is based on microprogramming scheme and is also successful in most behavior of processors. By using this, we can describe scalar processor very efficiently with by-far faster simulation speed in compared with HDL model.

  • PDF