• Title/Summary/Keyword: Neutron transport equation

Search Result 33, Processing Time 0.017 seconds

Variational nodal methods for neutron transport: 40 years in review

  • Zhang, Tengfei;Li, Zhipeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3181-3204
    • /
    • 2022
  • The variational nodal method for solving the neutron transport equation has evolved over 40 years. Based on a functional form of the Boltzmann neutron transport equation, the method now comprises a complete set of variants that can be employed for different problems. This paper presents an extensive review of the development of the variational nodal method. The emphasis is on summarizing the whole theoretical system rather than validating the methodologies. The paper covers the variational nodal formulation of the Boltzmann neutron transport equation, the Ritz procedure for various application purposes, the derivation of boundary conditions, the extension for adjoint and perturbation calculations, and treatments for anisotropic scattering sources. Acceleration approaches for constructing response matrices and solving the resulting system of algebraic equations are also presented.

A new approach for calculation of the neutron noise of power reactor based on Telegrapher's theory: Theoretical and comparison study between Telegrapher's and diffusion noise

  • Bahrami, Mona;Vosoughi, Naser
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.681-688
    • /
    • 2020
  • The telegrapher's theory was used to develop a new formulation for the neutron noise equation. Telegrapher's equation is supposed to demonstrate a more realistic approximation for neutron transport phenomena, especially in comparison to the diffusion theory. The physics behind such equation implies that the signal propagation speed is finite, instead of the infinite as in the case of ordinary diffusion. This paper presents the theory and results of the development of a new method for calculation of the neutron noise using the telegrapher's equation as its basis. In order to investigate the differences and strengths of the new method against the diffusion based neutron noise, a comparison was done between the behaviors of two methods. The neutron noise based on SN transport considered as a precision measuring point. The Green's function technique was used to calculate the neutron noise based on telegrapher's and diffusion methods as well as the transport. The amplitude and phase of Green's function associated with the properties of the medium and frequency of the noise source were obtained and their behavior was compared to the results of the transport. It was observed, the differences in some cases might be considerable. The effective speed of propagation for the noise perturbations were evaluated accordingly, resulting in considerable deviations in some cases.

Nodal Transport Methods Using the Simplified Even-Parity Neutron Transport Equation (단순 우성 중성자 수송방정식을 이용한 노달 수송해법)

  • Noh, Taewan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.211-221
    • /
    • 2018
  • Nodal transport methods are proposed for solving the simplified even-parity neutron transport (SEP) equation. These new methods are attributed to the success of existing nodal diffusion methods such as the Polynomial Expansion Nodal and the Analytic Function Expansion Nodal Methods, which are known to be very effective for solving the neutron diffusion equation. Numerical results show that the simplified even-parity transport equation is a valid approximation to the transport equation and that the two nodal methods developed in this study also work for the SEP transport equation, without conflict. Since accuracy of methods is easily increased by adding node unknowns, the proposed methods will be effective for coarse mesh calculation and this will also lead to computation efficiency.

Piecewise-Constant Method for Angular Approximation for the Second-Order Multidimensional Neutron Transport Equations (다차원 2계 중성자 수송방정식의 방향근사를 위한 영역상수법)

  • Noh, Tae-Wan
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.46-52
    • /
    • 2007
  • The piecewise constant angular approximation is developed to replace the conventional angular quadrature sets in the solution of the second-order, multi-dimensional $S_{N}$ neutron transport equations. The newly generated quadrature sets by this method substantially mitigate ray effects and can be used in the same manner as the conventional quadrature sets are used. The discrete-ordinates and the piecewise-constant approximations are applied to both the first-order Boltzmann and the second-order form of neutron transport equations in treating angular variables. The result is that the mitigation of ray effects is only achieved by the piecewise-constant method, in which new angular quadratures are generated by integrating angle variables over the specified region. In other sense, the newly generated angular quadratures turn out to decrease the contribution of mixed-derivative terms in the even-parity equation that is one of the second-order neutron transport equation. This result can be interpreted as the entire elimination or substantial mitigation of ray effect are possible in the simplified even-parity equation which has no mixed-derivative terms.

Development of the Discrete-Ordinates, Nodal Transport Methods Using the Simplified Even-Parity Neutron Transport Equation

  • Noh, Taewan
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.605-617
    • /
    • 2000
  • Nodal transport methods are studied for the solution of two dimensional discrete-ordinates, simplified even-parity transport equation(SEP) which is known to be an approximation to the true transport equation. The polynomial expansion nodal method(PEN) and the analytic function expansion nodal method(AFEN)which have been developed for the diffusion theory are used for the solution of the discrete-ordinates form of SEP equation. Our study shows that while the PEN method in diffusion theory can directly be converted without complication, the AFEN method requires a theoretical modification due to the nonhomogeneous property of the transport equation. The numerical results show that the proposed two methods work well with the SEP transport equation with higher accuracies compared with the conventional finite difference method.

  • PDF

Solution of the SAAF Neutron Transport Equation with the Diffusion Synthetic Acceleration (확산 가속법을 이용한 SAAF 중성자 수송 방정식의 해법)

  • Noh, Tae-Wan;Kim, Sung-Jin
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.233-240
    • /
    • 2008
  • Conventionally, the second-order self-adjoint neutron transport equations have been studied using the even parity and the odd parity equations. Recently, however, the SAAF(self-adjoint angular flux) form of neutron transport equation has been introduced as a new option for the second-order self-adjoint equations. In this paper we validated the SAAF equation mathematically and clarified how it relates with the existing even and odd parity equations. We also developed a second-order SAAF differencing formula including DSA(diffusion synthetic acceleration) from the first-order difference equations. Numerical result is attached to show that the proposed methods increases accuracy with effective computational effort.

A New Acceleration Method of Additive Angular Dependent Rebalance with Extrapolation for Discrete Ordinates Transport Equation

  • Park, Chang-Je;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.314-322
    • /
    • 2002
  • A new extrapolation method is developed and applied to the additive angular dependent rebalance (AADR) acceleration for discrete ordinates neutron transport calculations. With this extrapolation, the convergence of AADR solution for distinct discretizations between the high- order and low-order equations is remarkably improved and thus the “inconsistent discretization problem” is resolved. Fourier analysis is also performed to find the optimal extrapolation and weighting parameters, which give the smallest spectral radius. The numerical tests demonstrate that the AADR with extrapolation works well as predicted by the Fourier analysis.

ANALOG COMPUTING FOR A NEW NUCLEAR REACTOR DYNAMIC MODEL BASED ON A TIME-DEPENDENT SECOND ORDER FORM OF THE NEUTRON TRANSPORT EQUATION

  • Pirouzmand, Ahmad;Hadad, Kamal;Suh, Kune Y.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.243-256
    • /
    • 2011
  • This paper considers the concept of analog computing based on a cellular neural network (CNN) paradigm to simulate nuclear reactor dynamics using a time-dependent second order form of the neutron transport equation. Instead of solving nuclear reactor dynamic equations numerically, which is time-consuming and suffers from such weaknesses as vulnerability to transient phenomena, accumulation of round-off errors and floating-point overflows, use is made of a new method based on a cellular neural network. The state-of-the-art shows the CNN as being an alternative solution to the conventional numerical computation method. Indeed CNN is an analog computing paradigm that performs ultra-fast calculations and provides accurate results. In this study use is made of the CNN model to simulate the space-time response of scalar flux distribution in steady state and transient conditions. The CNN model also is used to simulate step perturbation in the core. The accuracy and capability of the CNN model are examined in 2D Cartesian geometry for two fixed source problems, a mini-BWR assembly, and a TWIGL Seed/Blanket problem. We also use the CNN model concurrently for a typical small PWR assembly to simulate the effect of temperature feedback, poisons, and control rods on the scalar flux distribution.

The Variational Method Applied to the Neutron Transport Equation

  • Kim, Sang-Won;Pac, Pong-Youl
    • Nuclear Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.203-208
    • /
    • 1971
  • Noether's theorem is applied to the one dimensional neutron transport equation. It is obtained the transformation rendering the functional of the one dimensional Boltzmann equation invariant. It is derived the law conserving the product of the directional flux and its adjoint flux. The possible types of the solution of the Boltzmann equation are discussed. The results are compared with the well-known solution.

  • PDF

Application of Discrete-Ordinate Method to the Time Dependent Radiative Heat Transfer Calculations (방향차분법을 적용한 시간종속 복사 열전달 계산)

  • Noh, Tae-Wan
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.250-255
    • /
    • 2006
  • In this study, the discrete ordinates method which has been widely used in the solution of neutron transport equation is applied to the solution of the time dependent radiative transfer equation. The self-adjoint form of the second order radiation intensity equation is used to enhance the stability of the solution, and a new multi-step linearization method is developed to avoid the nonlinearity in the material temperature equation. This new solution method is applied to the well known Marshak wave problem, and the numerical result is compared with that of the conventional Monte-Carlo method.