DOI QR코드

DOI QR Code

Variational nodal methods for neutron transport: 40 years in review

  • Zhang, Tengfei (School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Li, Zhipeng (CAEP Software Centre for High Performance Numerical Simulation)
  • Received : 2022.02.05
  • Accepted : 2022.04.18
  • Published : 2022.09.25

Abstract

The variational nodal method for solving the neutron transport equation has evolved over 40 years. Based on a functional form of the Boltzmann neutron transport equation, the method now comprises a complete set of variants that can be employed for different problems. This paper presents an extensive review of the development of the variational nodal method. The emphasis is on summarizing the whole theoretical system rather than validating the methodologies. The paper covers the variational nodal formulation of the Boltzmann neutron transport equation, the Ritz procedure for various application purposes, the derivation of boundary conditions, the extension for adjoint and perturbation calculations, and treatments for anisotropic scattering sources. Acceleration approaches for constructing response matrices and solving the resulting system of algebraic equations are also presented.

Keywords

Acknowledgement

This research was supported by the National Natural Science Foundation of China (NSFC) [12175138, 11805122].

References

  1. W.M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2018 Jun 5.
  2. R.D. Lawrence, Progress in nodal methods for the solution of the neutron diffusion and neutron transport equations, Prog. Nucl. Energy 17 (3) (1986 Jan 1) 271-301. https://doi.org/10.1016/0149-1970(86)90034-X
  3. Y. Azmy, E. Sartori, Nuclear Computational Science: a Century in Review, Springer Science & Business Media, 2010 Apr 15.
  4. D.G. Cacuci (Ed.), Handbook of Nuclear Engineering: Vol. 1: Nuclear Engineering Fundamentals; Vol. 2: Reactor Design; Vol. 3: Reactor Analysis; Vol. 4: Reactors of Generations III and IV; Vol. 5: Fuel Cycles, Decommissioning, Waste Disposal and Safeguards, Springer Science & Business Media, 2010 Sep 14.
  5. O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, 4th edn., 1, Basic Formulation and Linear, 1989.
  6. M. Fortin, F. Brezzi, Mixed and Hybrid Finite Element Methods, SpringerVerlag, New York, 1991 Dec.
  7. G. Strang, G.J. Fix, An Analysis of the Finite Element Method (Book- an Analysis of the Finite Element Method), 318, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973, p. 1973.
  8. I. Dilber, E.E. Lewis, Variational nodal methods for neutron transport, Nucl. Sci. Eng. 91 (2) (1985 Oct 1) 132-142. https://doi.org/10.13182/NSE85-A27436
  9. E.E. Lewis, Y. Li, M.A. Smith, W.S. Yang, A.B. Wollaber, Preconditioned Krylov solution of response matrix equations, Nucl. Sci. Eng. 173 (3) (2013 Mar 1) 222-232. https://doi.org/10.13182/NSE11-106
  10. E.E. Lewis, Finite element approximation to the even-parity transport equation, in: Advances in Nuclear Science and Technology, Springer, Boston, MA, 1981, pp. 155-225.
  11. E.E. Lewis, G. Palmiotti, T. Taiwo, Space-angle Approximations in the Variational Nodal Method, Argonne National Lab., 1999.
  12. K. Zhuang, W. Shang, T. Li, J. Yan, S. Wang, X. Tang, Y. Li, Variational nodal method for three-dimensional multi-group neutron diffusion equation based on arbitrary triangular prism, Ann. Nucl. Energy 158 (2021 Aug 1) 108285. https://doi.org/10.1016/j.anucene.2021.108285
  13. V.S. Vladimirov, Mathematical Problems in the One-Velocity Theory of Particle Transport, Atomic Energy of Canada Limited, 1963.
  14. G.C. Pomraning, M. Clark Jr., The variational method applied to the monoenergetic Boltzmann equation. Part I, Nucl. Sci. Eng. 16 (2) (1963 Jun 1) 147-154. https://doi.org/10.13182/NSE63-A26494
  15. G.C. Pomraning, M. Clark Jr., The variational method applied to the monoenergetic Boltzmann equation. Part II, Nucl. Sci. Eng. 16 (2) (1963 Jun 1) 155-164. https://doi.org/10.13182/NSE63-A26495
  16. J.A. Davis, Variational vacuum boundary conditions for a PN approximation, Nucl. Sci. Eng. 25 (2) (1966 Jun 1) 189-197. https://doi.org/10.13182/NSE66-A17736
  17. S. Kaplan, J.A. Davis, Canonical and involutory transformations of the variational problems of transport theory, Nucl. Sci. Eng. 28 (2) (1967 May 1) 166-176. https://doi.org/10.13182/NSE67-A17466
  18. R.W. Clough, The finite element method in plane stress analysis, Pittsburgh Pa, in: Proceedings of 2nd ASCE Conference on Electronic Computation, 1960. Sept. 8 and, 9, 1960.
  19. W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation (No. LA-UR-73-479; CONF-730414-2), Los Alamos Scientific Lab, N. Mex.(USA), 1973.
  20. F. Brezzi, On the Existence, Uniqueness and Approximation of Saddle-point Problems Arising from Lagrangian Multipliers, Publications mathematiques et informatique de Rennes, 1974, pp. 1-26.
  21. C.R. De Oliveira, An arbitrary geometry finite element method for multigroup neutron transport with anisotropic scattering, Prog. Nucl. Energy 18 (1-2) (1986 Jan 1) 227-236. https://doi.org/10.1016/0149-1970(86)90029-6
  22. S. Van Criekingen, F. Nataf, Have P. para fish, A parallel FEePN neutron transport solver based on domain decomposition, Ann. Nucl. Energy 38 (1) (2011 Jan 1) 145-150. https://doi.org/10.1016/j.anucene.2010.08.002
  23. S. Schunert, Y. Wang, F. Gleicher, J. Ortensi, B. Baker, V. Laboure, C. Wang, M. DeHart, R. Martineau, A flexible nonlinear diffusion acceleration method for the SN neutron transport equations discretized with discontinuous finite elements, J. Comput. Phys. 338 (2017 Jun 1) 107-136. https://doi.org/10.1016/j.jcp.2017.01.070
  24. Y. Wang, Adaptive Mesh Refinement Solution Techniques for the Multi-Group SN Neutron Transport Equations Using a Higher-Order Discontinuous Finite Element Method, Texas A&M University, 2009.
  25. Y. Wang, S. Schunert, J. Ortensi, V. Laboure, M. DeHart, Z. Prince, F. Kong, J. Harter, P. Balestra, F. Gleicher, Rattlesnake: a MOOSE-based multi-physics multi-scheme radiation transport application, Nucl. Technol. (2021 May 21) 1-26.
  26. K.F. Laurin-Kovitz, E.E. Lewis, Variational nodal transport perturbation theory, Nucl. Sci. Eng. 123 (3) (1996 Jul 1) 369-380. https://doi.org/10.13182/NSE96-A24200
  27. G. Palmiotti, E.E. Lewis, C.B. Carrico, VARIANT: VARIational Anisotropic Nodal Transport for Multi-Dimensional Cartesian and Hexadgonal Geometry Calculation, Argonne National Laboratory, Argonne, IL, 1995 Oct 1.
  28. H. Zhang, E.E. Lewis, Generalization of the variational nodal method to spherical harmonics approximations in R-Z geometry, Nucl. Sci. Eng. 152 (1) (2006 Jan 1) 29-36. https://doi.org/10.13182/NSE06-A2560
  29. J.Y. Doriath, J.M. Ruggieri, G. Buzzi, J.M. Rieunier, P. Smith, P. Fougeras, A. Maghnouj, Reactor analysis using a variational nodal method implemented in the ERANOS system, in: In Proc. Topl. Mtg. Advances in Reactor Physics, 1994 Apr 11, pp. 11-15.
  30. C.B. Carrico, E.E. Lewis, Variational nodal transport solutions of multi-group criticality problems, Prog. Nucl. Energy 25 (2-3) (1991 Jan 1) 99-106. https://doi.org/10.1016/0149-1970(91)90004-9
  31. C.B. Carrico, E.E. Lewis, G. Palmiotti, Three-dimensional variational nodal transport methods for cartesian, triangular, and hexagonal criticality calculations, Nucl. Sci. Eng. 111 (2) (1992 Jun 1) 168-179. https://doi.org/10.13182/NSE92-1
  32. G. Palmiotti, C.B. Carrico, E.E. Lewis, Variational nodal transport methods with anisotropic scattering, Nucl. Sci. Eng. 115 (3) (1993 Nov 1) 233-243. https://doi.org/10.13182/NSE92-110
  33. E.E. Lewis, C.B. Carrico, G. Palmiotti, Variational nodal formulation for the spherical harmonics equations, Nucl. Sci. Eng. 122 (2) (1996 Feb 1) 194-203. https://doi.org/10.13182/NSE96-1
  34. E.E. Lewis, I. Dilber, Finite element, nodal and response matrix methods: a variational synthesis for neutron transport, Prog. Nucl. Energy 18 (1-2) (1986 Jan 1) 63-74. https://doi.org/10.1016/0149-1970(86)90013-2
  35. P.J. Turinsky, R.M. Al-Chalabi, P.H. Engrand, H.N. Sarsour, F.X. Faure, W.E. Guo, NESTLE: Few-Group Neutron Diffusion Equation Solver Utilizing the Nodal Expansion Method for Eigenvalue, Adjoint, Fixed-Source SteadyState and Transient Problems. EG and G Idaho, Inc., Idaho Falls, ID (United States), Los Alamos National Lab., NM (United States), 1994 Jun 1.
  36. R.D. Lawrence, DIF3D Nodal Neutronics Option for Two-And Three-Dimensional Diffusion Theory Calculations in Hexagonal Geometry, Argonne National Lab., IL (USA), 1983 Mar 1 [LMFBR].
  37. E.M. Gelbard, Application of Spherical Harmonics Method to Reactor Problems, Bettis Atomic Power Laboratory, West Mifflin, PA, 1960 Sep. Technical Report No. WAPD-BT-20.
  38. M. Tatsumi, A. Yamamoto, Advanced PWR core calculation based on multigroup nodal-transport method in three-dimensional pin-by-pin geometry, J. Nucl. Sci. Technol. 40 (6) (2003 Jun 1) 376-387. https://doi.org/10.1080/18811248.2003.9715369
  39. Y. Li, W. Yang, S. Wang, H. Wu, L. Cao, A three-dimensional PWR-core pin-bypin analysis code NECP-Bamboo2. 0, Ann. Nucl. Energy 144 (2020 Sep 1) 107507. https://doi.org/10.1016/j.anucene.2020.107507
  40. E.E. Lewis, G. Palmiotti, Simplified spherical harmonics in the variational nodal method, Nucl. Sci. Eng. 126 (1) (1997 May 1) 48-58. https://doi.org/10.13182/NSE97-A24456
  41. R.E. Marshak, Note on the spherical harmonic method as applied to the Milne problem for a sphere, Phys. Rev. 71 (7) (1947) 443. https://doi.org/10.1103/PhysRev.71.443
  42. M.A. Smith, E.E. Lewis, E.R. Shemon, DIF3D-VARIANT 11.0: a Decade of Updates, Argonne National Lab.(ANL), Argonne, IL (United States), 2014 Apr 9.
  43. K.F. Laurin-Kovitz, G. Palmiotti, E.E. Lewis, Variational Nodal Perturbation Theory with Anisotropic Scattering, Argonne National Lab.(ANL), Argonne, IL (United States), 1997 Sep 1.
  44. K. Laurin-Kovitz, G. Palmiotti, E.E. Lewis, Variational Nodal Perturbation Calculations Using Simplified Spherical Harmonics, Argonne National Lab., IL (United States), 1996 Dec 31.
  45. J.M. Ruggieri, R. Boyer, J.Y. Doriath, P.J. Finck, Accounting for strong localized heterogeneities and local transport effect in core calculation, Nucl. Sci. Eng. 124 (1) (1996 Sep 1) 82-88. https://doi.org/10.13182/NSE96-A24225
  46. T.H. Fanning, G. Palmiotti, Variational nodal transport methods with heterogeneous nodes, Nucl. Sci. Eng. 127 (2) (1997 Oct 1) 154-168. https://doi.org/10.13182/NSE97-A28594
  47. L.A. Semenza, E.E. Lewis, E.C. Rossow, The application of the finite element method to the multi-group neutron diffusion equation, Nucl. Sci. Eng. 47 (3) (1972 Mar 1) 302-310. https://doi.org/10.13182/NSE72-A22416
  48. E.T. Tomlinson, J.C. Robinson, Solution of the finite element diffusion and P 1 equations by iteration, Nucl. Sci. Eng. 63 (2) (1977 Jun 1) 167-178. https://doi.org/10.13182/NSE77-A27020
  49. W.F. Miller Jr., E.E. Lewis, E.C. Rossow, The application of phase-space finite elements to the one-dimensional neutron transport equation, Nucl. Sci. Eng. 51 (2) (1973 Jun 1) 148-156. https://doi.org/10.13182/NSE73-A26590
  50. W.F. Miller, E.E. Lewis, E.C. Rossow, Application of phase-space finite elements to the two-dimensional neutron transport equation in XY geometry, Nucl. Sci. Eng. 52 (1) (1973 Jan 1) 12-22.
  51. L.L. Briggs, W.F. Miller Jr., E.E. Lewis, Ray-effect mitigation in discrete ordinate-like angular finite element approximations in neutron transport, Nucl. Sci. Eng. 57 (3) (1975 Jul 1) 205-217. https://doi.org/10.13182/NSE75-A26752
  52. L.L. Briggs, E.E. Lewis, A comparison of constrained finite elements and response matrices as one-dimensional transport approximations, Nucl. Sci. Eng. 63 (3) (1977 Jul 1) 225-235. https://doi.org/10.13182/NSE77-A27035
  53. L.L. Briggs, E.E. Lewis, A two-dimensional constrained finite element method for nonuniform lattice problems, Nucl. Sci. Eng. 75 (1) (1980 Jul 1) 76-87. https://doi.org/10.13182/NSE80-A20320
  54. S.G. Hong, N.Z. Cho, CRX: a code for rectangular and hexagonal lattices based on the method of characteristics, Ann. Nucl. Energy 25 (8) (1998 May 1) 547-565. https://doi.org/10.1016/S0306-4549(97)00113-8
  55. J.Y. Cho, H.G. Joo, Solution of the C5G7MOX benchmark three-dimensional extension problems by the DeCART direct whole core calculation code, Prog. Nucl. Energy 48 (5) (2006 Jul 1) 456-466. https://doi.org/10.1016/j.pnucene.2006.01.006
  56. B. Kochunas, B. Collins, D. Jabaay, T.J. Downar, W.R. Martin, Overview of development and design of MPACT: Michigan parallel characteristics transport code, in: Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering-M and C, American Nuclear Society, 2013.
  57. Joo HG, Cho JY, Kim KS, Lee CC, Zee SQ. Methods and Performance of a Three-Dimensional Whole-Core Transport Code DeCART.
  58. M. Ryu, Y.S. Jung, H.H. Cho, H.G. Joo, Solution of the BEAVRS benchmark using the nTRACER direct whole core calculation code, J. Nucl. Sci. Technol. 52 (7-8) (2015 Aug 3) 961-969. https://doi.org/10.1080/00223131.2015.1038664
  59. J. Chen, Z. Liu, C. Zhao, Q. He, T. Zu, L. Cao, H. Wu, A new high-fidelity neutronics code NECP-X, Ann. Nucl. Energy 116 (2018 Jun 1) 417-428. https://doi.org/10.1016/j.anucene.2018.02.049
  60. E.E. Lewis, W.F. Miller Jr., T.P. Henry, A two-dimensional finite element method for integral neutron transport calculations, Nucl. Sci. Eng. 58 (2) (1975 Oct 1) 203-212. https://doi.org/10.13182/NSE75-A28223
  61. M.A. Smith, N. Tsoulfanidis, E.E. Lewis, G. Palmiotti, T.A. Taiwo, A finite subelement generalization of the variational nodal method, Nucl. Sci. Eng. 144 (1) (2003 May 1) 36-46. https://doi.org/10.13182/NSE144-36
  62. M.A. Smith, G. Palmiotti, E.E. Lewis, N. Tsoulfanidis, An integral form of the variational nodal method, Nucl. Sci. Eng. 146 (2) (2004 Feb 1) 141-151. https://doi.org/10.13182/NSE146-141
  63. I. Carlvik, A Method for Calculating Collision Probabilities in General Cylindrical Geometry and Applications to Flux Distributions and Dancoff Factors, Aktiebolaget Atomenergi, Stockholm (Sweden), 1964 May 15.
  64. F.D. Giust, R.J. Stamm'ler, A.A. Ferri, HELIOS 1.7 User Guide and Manual, Studsvik Scandpower, 2001.
  65. G. Marleau, DRAGON theory manual Part 1: collision probability calculations, 2001 Oct, p. 1. Report IGE-236 Rev.
  66. M.A. Smith, E.E. Lewis, G. Palmiotti, W.S. Yang, A first-order integral method developed for the VARIANT code, in: PHYSOR-2006-American Nuclear Society's Topical Meeting on Reactor Physics, 2006 Jan 1.
  67. T. Zhang, H. Wu, L. Cao, Y. Li, An improved variational nodal method for the solution of the three-dimensional steady-state multi-group neutron transport equation, Nucl. Eng. Des. 337 (2018 Oct 1) 419-427. https://doi.org/10.1016/j.nucengdes.2018.07.009
  68. T. Zhang, J. Xiong, L. Liu, Z. Li, K. Zhuang, Development and implementation of an integral variational nodal method to the hexagonal geometry nuclear reactors, Ann. Nucl. Energy 131 (2019 Sep 1) 210-220. https://doi.org/10.1016/j.anucene.2019.03.031
  69. H. Yin, T. Zhang, D. He, X. Liu, A quasi-transport integral variational nodal method for homogeneous nodes based on the 2D/1D method, Comput. Phys. Commun. (2022 Jan 14) 108290.
  70. E.E. Lewis, Interface angular coupling reductions in variational nodal methods for neutron transport, Nucl. Sci. Eng. 102 (2) (1989 Jun 1) 140-152. https://doi.org/10.13182/NSE89-A23639
  71. E.E. Lewis, M.A. Smith, G. Palmiotti, A new paradigm for whole core neutron transport without homogenization, in: Proc. Joint Int. Topl. Mtg. Mathematics and Computations and Supercomputing in Nuclear Applications, 2007 Apr 15, pp. 15-19.
  72. E.E. Lewis, M.A. Smith, G. Palmiotti, A new paradigm for local-global coupling in whole-core neutron transport, Nucl. Sci. Eng. 161 (3) (2009 Mar 1) 279-288. https://doi.org/10.13182/NSE161-279
  73. E.E. Lewis, M.A. Smith, G. Palmiotti, Quasi-reflected interface conditions for variational nodal lattice calculations, in: PHYSOR-2006-American Nuclear Society's Topical Meeting on Reactor Physics, 2006 Dec 1.
  74. T. Zhang, E.E. Lewis, M.A. Smith, W.S. Yang, A variational nodal approach to 2D/1D pin resolved neutron transport: I diffusion theory, Trans. Am. Nucl. Soc. 114 (1) (2016 Jun 15).
  75. T. Zhang, E.E. Lewis, M.A. Smith, W.S. Yang, A variational nodal approach to 2D/1D pin resolved neutron transport: II spherical harmonics, Trans. Am. Nucl. Soc. 114 (1) (2016 Jun 15).
  76. T. Zhang, E.E. Lewis, M.A. Smith, W.S. Yang, H. Wu, Variational nodal 2D/1D transport/diffusion solutions of the C5G7 benchmark problems, Trans. Am. Nucl. Soc. 115 (2016 Jan 1) 1118-1121.
  77. T. Zhang, E.E. Lewis, M.A. Smith, W.S. Yang, H. Wu, A variational nodal approach to 2D/1D pin resolved neutron transport for pressurized water reactors, Nucl. Sci. Eng. 186 (2) (2017 May 4) 120-133. https://doi.org/10.1080/00295639.2016.1273023
  78. T. Zhang, Y. Wang, E.E. Lewis, M.A. Smith, W.S. Yang, H. Wu, A threedimensional variational nodal method for pin-resolved neutron transport analysis of pressurized water reactors, Nucl. Sci. Eng. 188 (2) (2017 Nov 2) 160-174. https://doi.org/10.1080/00295639.2017.1350002
  79. Y. Wang, T. Zhang, E.E. Lewis, W.S. Yang, M.A. Smith, H. Wu, Three-dimensional variational nodal method parallelization for pin resolved neutron transport calculations, Prog. Nucl. Energy 117 (2019 Nov 1) 102991. https://doi.org/10.1016/j.pnucene.2019.03.007
  80. Y. Wang, C. Zhao, H. Wu, L. Cao, Comparison of the performance of heterogeneous variational nodal method and 2D/1D-MOC on pin-resolved neutron transport calculations of PWR, Ann. Nucl. Energy 138 (2020 Apr 1) 107227. https://doi.org/10.1016/j.anucene.2019.107227
  81. C. Zhao, Z. Liu, L. Liang, J. Chen, L. Cao, H. Wu, Improved leakage splitting method for the 2D/1D transport calculation, Prog. Nucl. Energy 105 (2018 May 1) 202-210. https://doi.org/10.1016/j.pnucene.2018.01.007
  82. W.S. Yang, M.A. Smith, G. Palmiotti, E.E. Lewis, Interface conditions for spherical harmonics methods, Nucl. Sci. Eng. 150 (3) (2005 Jul 1) 257-266. https://doi.org/10.13182/NSE05-1
  83. M.A. Smith, E.E. Lewis, G. Palmiotti, W.S. Yang, A first-order spherical harmonics formulation compatible with the variational nodal method, in: Proc. Int. Conf. Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments (PHYSOR 2004), 2004 Apr 25, pp. 25-29.
  84. E.E. Lewis, Much ado about nothing: response matrices for void regions, Ann. Nucl. Energy 31 (17) (2004 Nov 1) 2025-2037. https://doi.org/10.1016/j.anucene.2004.07.008
  85. E.E. Lewis, Primal, mixed and hybrid finite elements for neutronics computations, in: InProc. Int. Conf. Mathematics and Computation, Reactor Physics and Environmental Analysis of Nuclear Systems, Senda International, SA, Madrid, 1999, pp. 805-813. Madrid, Spain.
  86. Y. Li, Y. Wang, B. Liang, W. Shen, Partitioned-matrix acceleration to the fission-source iteration of the variational nodal method, Prog. Nucl. Energy 85 (2015 Nov 1) 640-647. https://doi.org/10.1016/j.pnucene.2015.08.001
  87. Y. Wang, Y. Li, T. Zhang, E.E. Lewis, M.A. Smith, W.S. Yang, H. Wu, Generalized partitioned matrix acceleration for variational nodal diffusion method, Nucl. Sci. Eng. 193 (6) (2019 Jun 3) 652-662. https://doi.org/10.1080/00295639.2018.1542883
  88. Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, 2003 Jan 1.
  89. Y. Wang, C. Rabiti, G. Palmiotti, Krylov Solvers Preconditioned with the LowOrder Red-Black Algorithm for the PN Hybrid FEM for the INSTANT Code, 2011.
  90. E.E. Lewis, M.A. Smith, W.S. Yang, A. Wollaber, Preconditioned Krylov and Gauss-Seidel Solutions of Response Matrix Equations, 2011.
  91. Y. Li, E.E. Lewis, M.A. Smith, H. Wu, L. Cao, Preconditioned multi-group GMRES algorithms for the variational nodal method, Nucl. Sci. Eng. 179 (1) (2015 Jan 1) 42-58. https://doi.org/10.13182/NSE13-103
  92. H. Zhang, E.E. Lewis, An adaptive approach to variational nodal diffusion problems, Nucl. Sci. Eng. 137 (1) (2001 Jan 1) 14-22. https://doi.org/10.13182/NSE01-A2172
  93. B. Liang, H. Wu, Y. Li, Adaptive expansion order for diffusion variational nodal method, Ann. Nucl. Energy 117 (2018 Jul 1) 114-130. https://doi.org/10.1016/j.anucene.2018.03.019
  94. W.S. Yang, G. Palmiotti, E.E. Lewis, Numerical optimization of computing algorithms of the variational nodal method based on transformation of variables, Nucl. Sci. Eng. 139 (2) (2001 Oct 1) 174-185. https://doi.org/10.13182/NSE01-A2230
  95. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Applications of Group Theory to the Physics of Solids, 2008.
  96. Z. Li, H. Wu, Y. Li, L. Cao, et al., Block-diagonalization of the variational nodal response matrix using the symmetry group theory[J], J. Comput. Phys. 351 (2017) 230-253. https://doi.org/10.1016/j.jcp.2017.09.029
  97. Y. Li, Z. Li, H. Wu, Y. Zheng, et al., Improved variational nodal method based on symmetry group theory[J], Nucl. Sci. Eng. 190 (2) (2018) 134-155. https://doi.org/10.1080/00295639.2017.1417346
  98. F. Ayres, Theory and Problems of Matrices, 1962.
  99. R.E. Alcouffe, Diffusion synthetic acceleration methods for the diamonddifferenced discrete-ordinates equations, Nucl. Sci. Eng. 64 (2) (1977 Oct 1) 344-355. https://doi.org/10.13182/NSE77-1
  100. E.W. Larsen, Unconditionally stable diffusion-synthetic acceleration methods for the slab geometry discrete ordinates equations. Part I: Theory, Nucl. Sci. Eng. 82 (1) (1982 Sep 1) 47-63. https://doi.org/10.13182/NSE82-1
  101. M.L. Adams, W.R. Martin, Diffusion synthetic acceleration of discontinuous finite element transport iterations, Nucl. Sci. Eng. 111 (2) (1992 Jun 1) 145-167. https://doi.org/10.13182/NSE92-A23930
  102. S. Schunert, Y. Wang, F. Gleicher, J. Ortensi, B. Baker, V. Laboure, C. Wang, M. DeHart, R. Martineau, A flexible nonlinear diffusion acceleration method for the SN neutron transport equations discretized with discontinuous finite elements, J. Comput. Phys. 338 (2017 Jun 1) 107-136. https://doi.org/10.1016/j.jcp.2017.01.070
  103. T. Zhang, E.E. Lewis, M.A. Smith, W.S. Yang, Y. Wang, H. Wu, Acceleration of within group iteration for pin-by-pin calculations, Ann. Nucl. Energy 112 (2018 Feb 1) 225-235. https://doi.org/10.1016/j.anucene.2017.10.006
  104. T. Zhang, H. Wu, L. Cao, Y. Li, Acceleration of 3D pin-by-pin calculations based on the heterogeneous variational nodal method, Ann. Nucl. Energy 114 (2018 Apr 1) 165-174. https://doi.org/10.1016/j.anucene.2017.12.012
  105. T. Zhang, X. Liu, J. Xiong, X. Chai, H. Wu, L. Cao, A hybrid acceleration method to pin-by-pin calculations using the heterogeneous variational nodal method, Transactions 119 (1) (2018 Nov 1) 1223-1225.
  106. T. Zhang, J. Xiong, A hybrid acceleration method to pin-by-pin calculations using the heterogeneous variational nodal method, Ann. Nucl. Energy 132 (2019 Oct 1) 723-733. https://doi.org/10.1016/j.anucene.2019.06.052
  107. W.A. Martin, R.J. Fateman, The MACSYMA system, in: Proceedings of the second ACM symposium on Symbolic and algebraic manipulation 23, 1971, pp. 59-75.
  108. S. Wolfram, The mathematica book. Assemb. Autom, 1999 Mar 1.