• 제목/요약/키워드: Neuroprotective effect

검색결과 554건 처리시간 0.026초

인간 신경모세포종 SH-SY5Y에서 인삼(人蔘) total ginsenosides의 신경보호 기능에 관련된 유전자 발현 양상에 대한 연구 (Gene expression profiling of SH -SY5Y cells in neuroprotective effect of total ginsenosides on H202 induced neurotoxicity)

  • 이승기;채영규;정경화;김지혁;허용석
    • 동의신경정신과학회지
    • /
    • 제18권1호
    • /
    • pp.95-110
    • /
    • 2007
  • Objective : The purpose of this study was to investigate molecular basis of neuroprotective effect in total ginsenosides. After H202 induced neurotoxicity, gene expression profiling of SH-SY5Y neuroblastoma cells treated by total ginsenosides is analyzed. Method : After SH-SY5Y cells were cultured, they were damaged by H202 induced oxidative stress. After twenty four hours, experimental group is treated by total ginsenosides and control group is treated by 0.9% saline. A high density cDNA microarray chip is used to analyze the gene expression profiling of SH-SY5Y cells. The Significance Analysis of Microarray method is used for identifying genes on a microarray. Results : 1. According to the results of microarray experiment, 17 genes were up-regulated, 38 genes were down-regulated. 2. Expression of OPHNl, KTANl, ATM, PRKCE, MAPKs genes associated with cell proliferation, neural growth, and the prevention of apoptosis were increased. 3. Change of EPX gene was the greatest among all genes. EPX gene associated with oxidative stress, and tumor suppressor gene ADAM11 were decreased. Conclusion : According to this study, molecular basis of neuroprotective effect of total ginsenosides is as followings: the increase of gene expression associated with cell proliferation, neuron growth, the prevention of apoptotsis and decrease of gene expression associated with oxidative stress and tumor suppressor.

  • PDF

파고지 (Psoralea corylifolia Linne) 추출물의 항산화 작용에 의한 신경세포 보호효과 (Antioxidant Activity and Neuroprotective Effect of Psoralea corylifolia Linne Extracts)

  • 윤미영;이보배;김주영;김용성;박은주;이승철;박해룡
    • 생약학회지
    • /
    • 제38권1호
    • /
    • pp.84-89
    • /
    • 2007
  • The present study describes the preliminary evaluation of the antioxidant activities and the neuroprotective effect of methanolic extracts from Psoralea corylifolia Linne (PCE). The antioxidant activities and neuroprotective effect of the PCE were evaluated by total phenolic contents (TPC), DPPH radical scavenging activity (RSA), reducing power (RP), MTT reduction assay, and LDH release assay. TPC, DPPH RSA, and RP of the extract at concentration of 100 ${\mu}g$ was 125.93 ${\mu}g$, 63.81%, 0.138, respectively, and those were concentration dependent. The treatment of PC12 and N18-RE-105 cells with various PCE concentrations under $H_2O_2$ resulted in the induction of protective effect in a dose-dependent manner, as determined by the results of an MTT reduction assay and LDH release assay. Therefore, these results suggest that PCE could be a new potential candidate as an antioxidant against neuronal diseases.

Neuroprotective Effect of Steamed and Fermented Codonopsis lanceolata

  • Weon, Jin Bae;Yun, Bo-Ra;Lee, Jiwoo;Eom, Min Rye;Ko, Hyun-Jeong;Lee, Hyeon Yong;Park, Dong-Sik;Chung, Hee-Chul;Chung, Jae Youn;Ma, Choong Je
    • Biomolecules & Therapeutics
    • /
    • 제22권3호
    • /
    • pp.246-253
    • /
    • 2014
  • Codonopsis lanceolata has been used as an herbal medicine for several lung inflammatory diseases, such as asthma, tonsillitis, and pharyngitis. Previously, we showed the neuroprotective effect of steamed and fermented C. lanceolata (SFC) in vitro and in vivo. In the current study, the treatment of HT22 cells with SFC decreased glutamate-induced cell death, suggesting that SFC protected HT22 cells from glutamate-induced cytotoxicity. Based on these, we sought to elucidate the mechanisms of the neuroprotective effect of SFC by measuring the oxidative stress parameters and the expression of Bax and caspase-3 in HT22 cells. SFC reduced contents of ROS, $Ca^{2+}$ and NO. Moreover, SFC restored contents of glutathione and glutathione reductase as well as inhibited Bax and caspase-3 activity in HT22 cells. These results indicate that steamed and fermented C. lanceolata (SFC) extract protected HT22 cells by anti-oxidative effect and inhibition of the expression of Bax and caspase-3.

도인(桃仁)의 중대뇌동맥 폐색 유발 흰쥐에서 신경보호 효과 (Neuroprotective Effect of Semen Persicae in Middle Cerebral Artery Occlusion Rats)

  • 송미영;김호준;이명종
    • 대한한의학회지
    • /
    • 제30권2호
    • /
    • pp.117-126
    • /
    • 2009
  • Objectives: This study was performed to investigate the effects of Semen Persicae (SP) on infarct volume, COX-2 protein expression in the middle cerebral artery occlusion (MCAo) rats. Methods: Twenty-eight rats were randomly assigned to four groups (MCAo experimental group, MCAo control group, sham experimental group, control group). The middle cerebral artery (MCA) was occluded in the MCAo group by proximal focal cerebral ischemia rat model, while the MCA was not occluded in the sham group. SP extraction was administrated for 4 days to each experimental group. Neuroprotective effects were investigated by measurement of brain damage using 2, 3, 5-triphenyltetrazolium chloride staining and analysis of COX-2 protein expression by western blotting. Results: The occurrence of infarct volume in the SP oral administration group decreased compared to the control group. COX-2 protein expression in the SP oral administration group decreased compared to the control group. Conclusions: The present study demonstrates the effect of SP in reducing infarct volume and decreasing COX-2 expression.

  • PDF

Neuroprotective Effect of Wogonin: Potential Roles of Inflammatory Cytokines

  • Piao, Hua-Zi;Jin, Shun-Ai;Chun, Hyang-Sook;Lee, Jae-Chul;Kim, Won-Ki
    • Archives of Pharmacal Research
    • /
    • 제27권9호
    • /
    • pp.930-936
    • /
    • 2004
  • Wogonin (5,7-dihydroxy-8-methoxyflavone), an active component originated from the root of Scutellaria baicalensis Georgi, has been reported to possess antioxidant and anti-inflamma-tory properties. In this study, we investigated the neuroprotective effect of wogonin in a focal cerebral ischemia rat model. Wogonin markedly reduced the infarct volume after 2 h middle cerebral artery occlusion followed by 22 h reperfusion. Wogonin decreased the production of nitric oxide and inflammatory cytokines such as TNF-$\alpha$ and IL-6 in lipopolisaccharide-stimu-lated microglial cells. While wogonin reduced the activity of NF-$textsc{k}$B, it did not change the activ-ity of mitogen-activated protein kinases family members, p38, ERK and JNK. The lipopolisaccharide-stimulated production of NO and cytokines was significantly blocked by vari-ous kinds of NF-$textsc{k}$B inhibitors such as N-acetyl cysteine, pyrrolidinedithiocarbamate and MG-132. The data may indicate that wogonin has neuroprotective effect by preventing the over-activation of microglial cells, possibly by inactivating NF-$textsc{k}$B signaling pathway

대계와 실리비닌의 Mouse BV2 Microglial Cells에서 Lipopolysaccharide에 의해 유발된 염증반응에 대한 신경보호 효과 (Neuroprotective Effect of Cirsium japonicum and Silibinin on Lipopolysaccharide-induced Inflammation in BV2 Microglial Cells)

  • 여현수;김동우;전찬용;최유경;박종형
    • 대한한방내과학회지
    • /
    • 제28권1호
    • /
    • pp.166-175
    • /
    • 2007
  • Objectives : This study was designed to evaluate the neuroprotective effect of Cirsium japonicum and Silibinin on lipopolysaccharide-induced inflammation in BV2 microglial cells. Methods : We studied on the neuroprotective effect of lipopolysaccharide-induced inflammation using MTS assay, western blot, and nitric oxide detection on mouse BV2 microglial cells. Results : Cirsium japonicum dose-dependently (50${\mu}g/ml$${\sim}$$250{\mu}g/ml$) inhibited nitrite production and iNOS expression in lipopolysaccharide-induced BV2 microglia and also significantly reduced lipopolysaccharide-induced COX-2 activation in western blot. Silibinin dose-dependently (10${\mu}M$${\sim}$$100{\mu}M$) inhibited nitrite production and iNOS expression in lipopolysaccharide-induced BV2 microglial cells. Silibinin also significantly reduced lipopolysaccharide-induced COX-2 activation in western blot. Conclusion : These effects of neuroprotection related to anti-inflammation suggest that Cirsium japonicum and Silibininmay be useful candidates for the development of a drug for related neurodegenerative diseases.

  • PDF

성향정기산이 흰쥐의 MCAO에 의한 국소뇌허혈에 미치는 영향 (Neuroprotective Effect of Sunghyangjungki-San on Focal Cerebral Ischemia Induced by MCAO in Rats)

  • 김효선;김연섭
    • 동의생리병리학회지
    • /
    • 제20권3호
    • /
    • pp.596-602
    • /
    • 2006
  • This study evaluated neuroprotective effect of Sunghyangjungki-San (SHS) on the focal cerebral ischemia. The rats were induced infarct in cerebral cortex and caudoputamen by using temporal occlussion of the middle cerebral artery (MCAO), then water extract of SHS was treated for MCAO rats. Neuroprotective effect was evaluated by neurological score, infarct sizes and total volume, positive neurons against Bax, Caspase-3, HSP-72, and $HIF-1{\alpha}$ in infarct area with immunohistochemistry. The results obtained were as follows: Treatment of SHS improved neurological score of MCAO rats, but there was not a statistical significance. Treatment of SHS reduced significantly infarct sizes in the brain sections of MCAO rats. Treatment of SHS reduced significantly total volume of infarct of MCAO rats. Treatment of SHS reduced significantly Bax positive neurons in penumbra of cerebral cortex of MCAO rats. Treatment of SHS reduced significantly Caspase-3 positive neurons in caudoputamen and penumbra of cerebral cortex of MCAO rats. Treatment of SHS reduced significantly HSP-72 positive neurons in penumbra of cerebral cortex of MCAO rats. Treatment of SHS reduced significantly $IF-1{\alpha}$ positive neurons in penumbra of cerebral cortex of MCAO rats.

왕머루포도 뿌리에서 분리한 heyneanol A의 신경보호효과 (Neuroprotective Effect of Heyneanol A from the roots of vitis amurensis Rup)

  • 황화수;남궁미애;이은옥;심범상;안규석;김성훈
    • 동의생리병리학회지
    • /
    • 제21권6호
    • /
    • pp.1411-1414
    • /
    • 2007
  • According to the report of Korea National Statistical Office in 2007, cerebral vascular disease is second cause of deaths in Korean. Cerebral ischemia is one of the main reason of cerebral vascular diseases. To evaluate the neuroprotective effect of heyneanol A against cerebral ischemia, we used the middle cerebral artery occlusion model (MCAO). Heyneanol A from root of vitis amurensis Rup is a tetramer of resveratrol as known anti-oxidant and anti-cancer agent. Although the effects of resveratrol in the various fields have been well established, little is known of the effects of heyneanol A. In this study, heyneanol A reduced infarction and edema volume by 33.5% and 57% compared with control groups (vehicle), respectively. Also, neurological score was decreased by heyneanol A. It's effects were more potent than resveratol. Taken together, these results exerted that heyneanol A has a neuroprotective effect against cerebral ischemia.

Anti-neuroinflammatory effects of ethanolic extract of black chokeberry (Aronia melanocapa L.) in lipopolysaccharide-stimulated BV2 cells and ICR mice

  • Lee, Kang Pa;Choi, Nan Hee;Kim, Hyun-Soo;Ahn, Sanghyun;Park, In-Sik;Lee, Dea Won
    • Nutrition Research and Practice
    • /
    • 제12권1호
    • /
    • pp.13-19
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: One of the mechanisms considered to be prevalent in the development of Alzheimer's disease (AD) is hyper-stimulation of microglia. Black chokeberry (Aronia melanocapa L.) is widely used to treat diabetes and atherosclerosis, and is known to exert anti-oxidant and anti-inflammatory effects; however, its neuroprotective effects have not been elucidated thus far. MATERIALS/METHODS: We undertook to assess the anti-inflammatory effect of the ethanolic extract of black chokeberry friut (BCE) in BV2 cells, and evaluate its neuroprotective effect in the lipopolysaccharide (LPS)-induced mouse model of AD. RESULTS: Following stimulation of BV2 cells by LPS, exposure to BCE significantly reduced the generation of nitric oxide as well as mRNA levels of numerous inflammatory factors such as inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), interleukin 1 beta ($IL-1{\beta}$), and tumor necrosis factor alpha ($TNF-{\alpha}$). In addition, AD was induced in a mouse model by intraperitoneal injection of LPS ($250{\mu}g/kg$), subsequent to which we investigated the neuroprotective effects of BCE (50 mg/kg) on brain damage. We observed that BCE significantly reduced tissue damage in the hippocampus by downregulating iNOS, COX-2, and $TNF-{\alpha}$ levels. We further identified the quinic acids in BCE using liquid chromatography-mass spectrometry (LCMS). Furthermore, we confirmed the neuroprotective effect of BCE and quinic acid on amyloid beta-induced cell death in rat hippocampal primary neurons. CONCLUSIONS: Our findings suggest that black chokeberry has protective effects against the development of AD.

글루타메이트로 유도된 쥐 해마 HT22 세포의 산화적 손상에 대한 서양민들레 지상부의 뇌신경세포 보호활성 (Neuroprotective Effect of the Aerial Parts of Taraxacum officinale on Glutamate-induced Oxidative Injury in Mouse Hippocampal HT22 Cells)

  • 리빈;이동성;최현규;김경수;지혜영;노정미;김기모;김윤철
    • 약학회지
    • /
    • 제55권4호
    • /
    • pp.314-318
    • /
    • 2011
  • Glutamate-induced oxidative injury contributes to neuronal degeneration in many central nervous system (CNS) diseases, such as epilepsy and ischemia. Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a role in the pathogenesis of these diseases. In the present study, we investigated the neuroprotective effects of the standard extracts of Taraxacum officinale Weber, one of the original plants of Taraxaci Herba, on glutamate-induced oxidative injury in mouse hippocampal HT22 cells. The standard EtOH extract of the aerial parts of T. officinale (NNMBS270) showed significant cytoprotective effects on glutamate-induced neurotoxicity and induced the expression of heme oxygenase (HO)-1 in the mouse hippocampal HT22 cells, while the roots' extract (NNMBS271) did not show neuroprotective effect. These results suggest that the extract of the aerial parts of T. officinale could be an effective candidate for the treatment of ROS-related neurological diseases.