• Title/Summary/Keyword: Neuronal cell

Search Result 1,057, Processing Time 0.022 seconds

Experimental Studies on Lead Toxicity in Domestic II. Histopathology (고양이의 납중독에 관한 실험적 연구 2. 조직병리학적 소견)

  • Hong Soon-Ho;Han Hong Ryul
    • Journal of Veterinary Clinics
    • /
    • v.11 no.1
    • /
    • pp.485-505
    • /
    • 1994
  • Lead toxicity was evaluated in forty-five cats on a balanced diet, treated with 0(control), 10, 100(low), 1, 000, 2, 000 and 4, 000(high)ppm of lead acetate orally on a body weight basis. The objectives were to describe the gross and histopathologic changes and to demonstrate what tissue lead concentrations correlate with the known dosages of lead. In subclinical lead toxicity, greater than 80% of the absorbed lead was deposited in the bone, whereas in more acute lead toxicity, 42% of absorbed lead was deposited in the bone and 36% and 20% of absorbed lead was deposited in the kidneys and in the liver, respectively. No gross lesions were found in the nervous system. Yellow-brown colored livers appear to be associated with lead toxicity. Neuronal necrosis in the cerebrum was the most predominant histopathologic finding. Astrocytic proliferation in the cerebral gray matter was observed in 1 high dose cat. Gliosis was noted in the cerebral cortex of 6 high dose cats. Two high dose cats had demyelination in the deepest layer of the cortical gray matter of the cerebrum. Extravasation of red cells and cavitation around the vessels were found in the cerebrum of 1 high dose cat. Six high dose cats had degeneration of Purkinje cells in the cerebellum. The microscopic findings in the peripheral nerves were ambiguous. In more acute toxicity, the cats had lead inclusions in the epithelial cells of proximal tubules of the kidneys of 7 cats and hepatocytes of the liver of S cats. These inclusions could be seen wlth H&E, but were more prominent with orcein staining. Two high dose cats had granulomas and connective tissue hyperplasia between tubules of the kidneys. Periportal hepatocyte vacuolization was observed in the liver of 22 cats. Vacuolization of seminiferous tubules and a reduced number of spermatogonia(indicative of reduced spermatogenesis) were found in the testis of 5 treated cats. Cystic ovaries were observed in 3 high dose cats and poor development of oogonia was found in 2 cats. The diagnosis of lead toxicity in cats can be suspected on the basis of the histopathologic lesions described, and can be of value in contributing to a diagnosis. A reliable diagnosis of lead poisoning can be helped utilizing tissue lead analysis(post molten)

  • PDF

The Neuroprotective Effects of 6-cyano-7-nitroquinoxalin-2,3-dione (CNQX) Via Mediation of Nitric Oxide Synthase on Hypoxic-ischemic Brain Injury in Neonatal Rats

  • Jung, Ji-Eun;Keum, Kyung-Hae;Choi, Eun-Jin;Kim, Jin-Kyung;Chung, Hai-Lee;Kim, Woo-Taek
    • Neonatal Medicine
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2011
  • Purpose: Current studies have demonstrated the neuroprotective effects of 6-cyano-7-nitroquinoxalin-2,3-dione (CNQX) in many animal models of brain injury, including hypoxic-ischemic (HI) encephlopathy, trauma and excitotoxicity, but limited data are available for those during the neonatal periods. Here we investigated whether CNQX can protect the developing rat brain from HI injury via mediation of nitric oxide synthase. Methods: In an in vivo model, left carotid artery ligation was done in 7-day-old Sprague-Dawley (SD) rat pups. The animals were divided into six groups; normoxia (N), hypoxia (H), hypoxia with sham-operation (HS), hypoxia with operation (HO), HO treated with vehicle (HV), and HO treated with CNQX at a dose of 10 mg/kg (HC). Hypoxia was made by exposure to a 2 hr period in the hypoxic chamber (92% $N_2$, 8% $O_2$). In an in vitro model, embryonic cortical neuronal cell culture of SD rats at 18-day gestation was done. The cultured cells were divided into three groups: normoxia (N), hypoxia (H), and hypoxia treated with CNQX (HC). The N group was prepared in 5% $CO_2$ incubators and the other groups were placed in 1% $O_2$) incubators (94% $N_2$, 5% $CO_2$) for 16 hr. Results: In the in vitvo and in vivo models, the expressions of iNOS and eNOS were reduced in the hypoxia group when compared to the normoxia group, whereas they were increased in the CNQX-treated group compared to the hypoxia group. In contrast, the expression of nNOS was showed reversely. Conclusion: CNQX has neuroprotective property over perinatal HI brain injury via mediation of nitric oxide synthase.

The Morphologic Changes of Parvalbumin- Immunoreactive Interneurons of the Dentate Gyrus in Kainate-Treated Mouse Hippocampal Slice Culture Epilepsy Model (Kainic Acid로 처리한 해마박편배양 마우스 간질모델에서 치아이랑 Parvalbumin 면역 반응성 사이신경세포의 형태학적 변화)

  • Chung, Hee Sun;Shin, Mi-Young;Kim, Young-Hoon;Lee, In-Goo;Whang, Kyung-Tai;Kim, Myung-Suk
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.12
    • /
    • pp.1551-1558
    • /
    • 2002
  • Purpose : Loss of hippocampal interneurons in dentate gyrus has been reported in patients with severe temporal lobe epilepsy and in animals treated with kainic acid(KA). Interneurons contain $Ca^{2+}$- binding protein parvalbumin(PV). The effects of kainic acid on parvalbumin-immunoreactive (PV-IR) interneurons in dentate gyrus were investigated in organotypic hippocampal slice cultures. Methods : Cultured hippocampal slices from postnatal day nine C57/BL6 mice were exposed to $10{\mu}M$ KA, and were observed at 0, 8, 24, 48, 72 hours after a one hour KA exposure. Neuronal injury was determined by morphologic changes of PV-IR interneuron in dentate gyrus. Results : Transient(1 hour) exposure of hippocampal explant cultures to KA produced marked varicosities in dendrites of PV-IR interneuron in dentate gyrus and the shaft of interbeaded dendrite is often much thinner than those in control. The presence of varicosities in dendrites was reversible with KA washout. The dendrites of KA treated explants were no longer beaded at 8, 24, 48 and 72 hours after KA exposure. The number of cells in PV-IR interneurons in dentate gyrus was decreased at 0, 8 hours after exposure. But there was no significant difference in 24, 48 and 72 hours recovery group compared with control group. Conclusion : The results suggested that loss of PV-IR interneurons in dentate gyrus is transient, and is not accompanied by PV-IR interneuronal cell death.

Expression of Neuronal Nitric Oxide Synthase (nNOS) in Developing Rat Kidney (분화중인 흰쥐 콩팥의 요세관에서 nNOS의 발현)

  • Song, Ji-Hyun;Ryu, Si-Yun;Kim, Jin;Jung, Ju-Young
    • Applied Microscopy
    • /
    • v.38 no.2
    • /
    • pp.141-148
    • /
    • 2008
  • Nitric oxide (NO) is an important regulator of renal blood flow, glomerular hemodynamics, and tubule transport processes in the kidney. There is also evidence that NO is involved in cell cycle regulation and mitotic division. During development the nNOS expression pattern differs from that observed in adult animals. However, little is known about temporal and spatial patterns of nNOS expression in the developing kidney. The purpose of this study was to establish the time of expression and the distribution of nNOS in the developing rat kidney. Kidneys from 14-, 16-, 17-, 18-, and 20-day-old fetuses, 1-, 4-, 7-, 14-, and 21-day-old pups, and adult animals were preserved and processed for immunohistochemistry. In the adult kidney, nNOS was detected in the parietal epithelium of Bowman s capsule, macula densa, descending thin limb and inner medullary collecting duct. nNOS immunoreactivity appeared first in the distal tubule anlage at 15 days of gestation, and in all epithelial cells of developing thick ascending limbs (TAL) as well as macula densa of 17- and 18-day-old fetuses. From 20 days of gestation to 14 days after birth, nNOS was expressed in the newly formed cortical TAL, which are located in the medullary ray, whereas in mature TAL of juxtamedullary nephrons, nNOS immunolabeling gradually decreased in intensity and became restricted to the macula densa. In inner medullary collecting ducts, nNOS immunoreactivity appeared first at 7 days after birth in the papillary tip and gradually ascended to the border between outer and inner medulla. In the descending thin limb and parietal epithelium of Bowman's capsule, weak nNOS immunoreactivity was observed at 14 days after birth and labeling gradually increased to adult levels at 21 days after birth. These results suggest that differential expression of nNOS in the developing kidney is an important physiological regulator of renal function during kidney maturation.

Effect of gomchwi (Ligularia fischeri) extract against high glucose- and H2O2-induced oxidative stress in PC12 cells (PC12 신경세포에서 고당 및 과산화수소로 유도된 산화적 스트레스에 대한 곰취 추출물의 효과)

  • Park, Sang Hyun;Park, Seon Kyeong;Ha, Jeong Su;Lee, Du Sang;Kang, Jin Yong;Kim, Jong Min;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.508-514
    • /
    • 2016
  • Effects of the ethyl acetate fraction from gomchwi (Ligularia fischeri) extract against high $glucose/H_2O_2-induced$ oxidative stress and in vitro neurodegeneration were investigated to confirm the physiological property of the extract. The ethyl acetate fraction of gomchwi extract showed the highest total phenolic contents than the other solvent fractions. An anti-hyperglycemic activity of the ethyl acetate fraction was evaluated using the ${\alpha}-glucosidase$ inhibitory assay, and the half maximal inhibitory concentration ($IC_{50}$) value for ${\alpha}-glucosidase$ was found to be $727.64{\mu}g/mL$. In addition, the ethyl acetate fraction showed excellent 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt radical scavenging activity, and inhibition of malondialdehyde production. The ethyl acetate fraction also decreased intracellular reactive oxygen species, whereas neuronal cell viability against high glucose/$H_2O_2$-induced cytotoxicity was found to be increased. Finally, 3,5-dicaffeoylquinic acid as a main phenolic compound in the ethyl acetate fraction was analyzed by high-performance liquid chromatography. These results suggest that gomchwi might be a good natural source of functional materials to prevent diabetic neurodegeneration.

Inhibitory Effect of Protaetiamycine 6 on Neuroinflammation in LPS-stimulated BV-2 Microglia (LPS에 의해 활성화된 미세아교세포에서 흰점박이꽃무지 유래 항균 펩타이드 Protaetiamycine 6의 신경염증 억제 효과)

  • Lee, Hwa Jeong;Seo, Minchul;Baek, Minhee;Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1078-1084
    • /
    • 2020
  • Protaetia brevitarsis seulensis is an insect belonging to the order Coleoptera. This insect is reported to contain large amounts of physiologically active substances useful for liver protective effect and improvements in blood circulation as well as a broad source of edible protein. Antimicrobial peptides (AMPs) are found in a variety of species, from microorganisms to mammals, and play an important role in the innate immune systems of living things. Microglia are the main source of proinflammatory cytokines and nitric oxide (NO) in the central nervous system. Activated microglia secrete large amounts of neuroinflammatory mediators (e.g., TNF-α, NO, and ROS), which are the main cause of neuronal cell death. In the present study, we investigated the inhibitory effect of Protaetiamycine 6 (PKARKLQKLSAYKTTLRN-NH2), an AMP derived from Protaetia brevitarsis seulensis, on LPS-induced neuroinflammation in BV-2 microglia. Protaetiamycine 6 significantly inhibited NO production without cytotoxicity and decreased the expression levels of inducible NO synthase and cyclooxygenase-2. In addition, Protaetiamycine 6 also reduced the production of neuroinflammatory cytokines on activated BV-2 microglia. These results suggest that Protaetiamycine 6 could be a good source of functional substance to prevent neuroinflammation and neurodegenerative diseases.

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.