DOI QR코드

DOI QR Code

The Neuroprotective Effects of 6-cyano-7-nitroquinoxalin-2,3-dione (CNQX) Via Mediation of Nitric Oxide Synthase on Hypoxic-ischemic Brain Injury in Neonatal Rats

  • Jung, Ji-Eun (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Keum, Kyung-Hae (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Choi, Eun-Jin (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Kim, Jin-Kyung (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Chung, Hai-Lee (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Kim, Woo-Taek (Department of Pediatrics, School of Medicine, Catholic University of Daegu)
  • Published : 2011.05.31

Abstract

Purpose: Current studies have demonstrated the neuroprotective effects of 6-cyano-7-nitroquinoxalin-2,3-dione (CNQX) in many animal models of brain injury, including hypoxic-ischemic (HI) encephlopathy, trauma and excitotoxicity, but limited data are available for those during the neonatal periods. Here we investigated whether CNQX can protect the developing rat brain from HI injury via mediation of nitric oxide synthase. Methods: In an in vivo model, left carotid artery ligation was done in 7-day-old Sprague-Dawley (SD) rat pups. The animals were divided into six groups; normoxia (N), hypoxia (H), hypoxia with sham-operation (HS), hypoxia with operation (HO), HO treated with vehicle (HV), and HO treated with CNQX at a dose of 10 mg/kg (HC). Hypoxia was made by exposure to a 2 hr period in the hypoxic chamber (92% $N_2$, 8% $O_2$). In an in vitro model, embryonic cortical neuronal cell culture of SD rats at 18-day gestation was done. The cultured cells were divided into three groups: normoxia (N), hypoxia (H), and hypoxia treated with CNQX (HC). The N group was prepared in 5% $CO_2$ incubators and the other groups were placed in 1% $O_2$) incubators (94% $N_2$, 5% $CO_2$) for 16 hr. Results: In the in vitvo and in vivo models, the expressions of iNOS and eNOS were reduced in the hypoxia group when compared to the normoxia group, whereas they were increased in the CNQX-treated group compared to the hypoxia group. In contrast, the expression of nNOS was showed reversely. Conclusion: CNQX has neuroprotective property over perinatal HI brain injury via mediation of nitric oxide synthase.

목적: 6-cyano-7-nitroquinoxalin-2,3-dione (CNQX)는 저산소성허혈성뇌병증, 외상성뇌손상, 흥분독성과 같은 뇌 손상동물 모델에서 보호 효과가 있다고 발표되고 있지만 신생아기에 그 효과에 대해서는 아직 제한적이다. 저자들은 CNQX를 이용하여 저산소성허혈성뇌손상을 동반한 발달 과정에 있는 흰쥐 뇌에 산화질소합성효소 중재를 통한 뇌 보호 효과를 알아보고자 하였다. 방법: 생체내 실험으로 생후 7일된 신생 흰쥐의 좌측 총 경동맥을 결찰한 후 6개군(정상산소군, 수술없이 저산소군, sham수술 후 저산소군, 수술 후 저산소군, vehicle 투여 후 저산소군, CNQX 투여 후 저산소군)으로 나누었고, 저산소 손상은 특별히 제작한 통속에서 2시간 동안 8% $O_2$에 노출시켰다. CNQX은 뇌손상 전 30분에 체중 kg당 10 mg를 투여하였다. 생체외 실험으로 재태기간 18일된 태아 백서의 대뇌피질 세포를 배양하여 정상산소군은 5% $CO_2$ 배양기(95% air, 5% $CO_2$)에 두었고, 저산소군과 뇌손상 전 CNQX 투여군(10 ${\mu}g$/mL)은 1% $O_2$). 배양기(94% $N_2$, 5% $CO_2$)에서 16시간동안 뇌세포손상을 유도하였다. 생체내 외 실험 모두 산화질소합성효소와 관련된 iNOS, eNOS, nNOS 항체와 primer를 이용하여 western blotting과 실시간중합효소연쇄반응을 시행하였다. 결과: 산화질소합성효소와 관련된 생체외 내 실험에서 iNOS와 eNOS의 발현은 저산소군에서 정상산소군보다 감소하였으나 CNQX 투여군에서는 저산소군보다 증가하였다. nNOS의 발현은 반대로 표현되었다. 결론: 본 연구에서 CNQX는 산화질소합성효소 중재를 통하여 주산기 저산소성 허혈성 뇌손상에서 신경보호 역할을 하는 것을 알 수 있었다.

Keywords

References

  1. Vannucci RC, Perlman JM. Interventions for perinatal hypoxicischemic encephalopathy. Pediatrics 1997;100:1004-14. https://doi.org/10.1542/peds.100.6.1004
  2. Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 1989;29:365-402. https://doi.org/10.1146/annurev.pa.29.040189.002053
  3. Varju P, Schlett K, Eisel U, Madarasz E. Schedule of NMDA receptor subunit expression and functional channel formation in the course of in vitro-induced neurogenesis. J Neurochem 2001;77: 1444-56. https://doi.org/10.1046/j.1471-4159.2001.00352.x
  4. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999;51:7-61.
  5. Nikam SS, Kornberg BE. AMPA receptor antagonists. Curr Med Chem 2001;8:155-70. https://doi.org/10.2174/0929867013373877
  6. Alabadi JA, Thibault JL, Pinard E, Seylaz J, Lasbennes F. 7- Nitroindazole, a selective inhibitor of nNOS, increases hippocampal extracellular glutamate concentration in status epilepticus induced by kainic acid in rats. Brain Res 1999;839:305-12. https://doi.org/10.1016/S0006-8993(99)01749-7
  7. Moncada S, Palmer RM, Higgs EA. Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol 1989;38:1709-15. https://doi.org/10.1016/0006-2952(89)90403-6
  8. Heales SJ, Bolanos JP, Stewart VC, Brookes PS, Land JM, Clark JB. Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1999;1410:215-28. https://doi.org/10.1016/S0005-2728(98)00168-6
  9. Sengpiel B, Preis E, Krieglstein J, Prehn JH. NMDA-induced superoxide production and neurotoxicity in cultured rat hippocampal neurons: role of mitochondria. Eur J Neurosci 1998;10:1903- 10. https://doi.org/10.1046/j.1460-9568.1998.00202.x
  10. Patel M, Li QY. Age dependence of seizure-induced oxidative stress. Neuroscience 2003;118:431-7. https://doi.org/10.1016/S0306-4522(02)00979-X
  11. Gunasekar PG, Kanthasamy AG, Borowitz JL, Isom GE. NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J Neurochem 1995;65:2016-21.
  12. Iwasaki Y, Ikeda K, Shiojima T, Kinoshita M. CNQX prevents spinal motor neuron death following sciatic nerve transection in newborn rats. J Neurol Sci 1995;134:21-5. https://doi.org/10.1016/0022-510X(95)00217-6
  13. Zhou Y, Zhou L, Chen H, Koliatsos VE. An AMPA glutamatergic receptor activation-nitric oxide synthesis step signals transsynaptic apoptosis in limbic cortex. Neuropharmacology 2006;51:67-76. https://doi.org/10.1016/j.neuropharm.2006.03.002
  14. Radenovic L, Selakovic V. Differential effects of NMDA and AMPA/kainate receptor antagonists on nitric oxide production in rat brain following intrahippocampal injection. Brain Res Bull 2005; 67:133-41. https://doi.org/10.1016/j.brainresbull.2005.06.019
  15. Levine S. Anoxic-ischemic encephalopathy in rats. Am J Pathol 1960;36:1-17.
  16. Brewer GJ. Isolation and culture of adult rat hippocampal neurons. J Neurosci Methods 1997;71:143-55. https://doi.org/10.1016/S0165-0270(96)00136-7
  17. Calvert JW, Zhang JH. Pathophysiology of an hypoxic-ischemic insult during the perinatal period. Neurol Res 2005;27:246-60. https://doi.org/10.1179/016164105X25216
  18. Delivoria-Papadopoulos M, Mishra OP. Mechanisms of cerebral injury in perinatal asphyxia and strategies for prevention. J Pediatr 1998;132:S30-4. https://doi.org/10.1016/S0022-3476(98)70525-6
  19. Gunn AJ, Gunn TR. The 'pharmacology' of neuronal rescue with cerebral hypothermia. Early Hum Dev 1998;53:19-35. https://doi.org/10.1016/S0378-3782(98)00033-4
  20. Matute C, Sanchez-Gomez MV, Martinez-Millan L, Miledi R. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc Natl Acad Sci U S A 1997;94:8830-5. https://doi.org/10.1073/pnas.94.16.8830
  21. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999;22:391-7. https://doi.org/10.1016/S0166-2236(99)01401-0
  22. Komuro H, Rakic P. Modulation of neuronal migration by NMDA receptors. Science 1993;260:95-7. https://doi.org/10.1126/science.8096653
  23. Kawasaki H, Morooka T, Shimohama S, Kimura J, Hirano T, Gotoh Y, et al. Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J Biol Chem 1997;272:18518-21. https://doi.org/10.1074/jbc.272.30.18518
  24. Ashwal S, Pearce WJ. Animal models of neonatal stroke. Curr Opin Pediatr 2001;13:506-16. https://doi.org/10.1097/00008480-200112000-00003
  25. Ignarro LJ. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 1990;30:535-60. https://doi.org/10.1146/annurev.pa.30.040190.002535
  26. Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 1990;345:346-7. https://doi.org/10.1038/345346a0
  27. Garthwaite J, Garthwaite G, Palmer RM, Moncada S. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 1989;172:413-6. https://doi.org/10.1016/0922-4106(89)90023-0
  28. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 1991;351:714 -8. https://doi.org/10.1038/351714a0
  29. Dienel GA, Hertz L. Astrocytic contributions to bioenergetics of cerebral ischemia. Glia 2005;50:362-88. https://doi.org/10.1002/glia.20157
  30. Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci U S A 1991;88:7797- 801. https://doi.org/10.1073/pnas.88.17.7797
  31. Lamas S, Marsden PA, Li GK, Tempst P, Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A 1992;89:6348-52. https://doi.org/10.1073/pnas.89.14.6348
  32. Lowenstein CJ, Dinerman JL, Snyder SH. Nitric oxide: a physiologic messenger. Ann Intern Med 1994;120:227-37. https://doi.org/10.7326/0003-4819-120-3-199402010-00009
  33. Galea E, Reis DJ, Feinstein DL. Cloning and expression of inducible nitric oxide synthase from rat astrocytes. J Neurosci Res 1994;37: 406-14. https://doi.org/10.1002/jnr.490370313
  34. Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia. Stroke 1997;28:1283-8. https://doi.org/10.1161/01.STR.28.6.1283
  35. Forman LJ, Liu P, Nagele RG, Yin K, Wong PY. Augmentation of nitric oxide, superoxide, and peroxynitrite production during cerebral ischemia and reperfusion in the rat. Neurochem Res 1998;23: 141-8. https://doi.org/10.1023/A:1022468522564
  36. Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 1997; 17:9157-64.
  37. Stagliano NE, Dietrich WD, Prado R, Green EJ, Busto R. The role of nitric oxide in the pathophysiology of thromboembolic stroke in the rat. Brain Res 1997;759:32-40. https://doi.org/10.1016/S0006-8993(97)00200-X
  38. Dimmeler S, Dernbach E, Zeiher AM. Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGFinduced endothelial cell migration. FEBS Lett 2000;477:258-62. https://doi.org/10.1016/S0014-5793(00)01657-4
  39. Higuchi Y, Hattori H, Kume T, Tsuji M, Akaike A, Furusho K. Increase in nitric oxide in the hypoxic-ischemic neonatal rat brain and suppression by 7-nitroindazole and aminoguanidine. Eur J Pharmacol 1998;342:47-9. https://doi.org/10.1016/S0014-2999(97)01524-0
  40. Tsuji M, Higuchi Y, Shiraishi K, Kume T, Akaike A, Hattori H. Protective effect of aminoguanidine on hypoxic-ischemic brain damage and temporal profile of brain nitric oxide in neonatal rat. Pediatr Res 2000;47:79-83. https://doi.org/10.1203/00006450-200001000-00015