DOI QR코드

DOI QR Code

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang (Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Jing Li (Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Jinjin Chen (Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Zepeng Zhang (Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Peng Xu (Department of Encephalopathy, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Hongyu Qi (Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Zhaoqiang Chen (Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Jiaqi Liu (Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Jing Lu (Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Mengqi Shi (Department of Graduate Administration, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Yibin Zhang (Department of Encephalopathy, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Ying Ma (Department of Encephalopathy, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Daqing Zhao (Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Xiangyan Li (Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine)
  • Received : 2022.06.06
  • Accepted : 2022.10.11
  • Published : 2023.05.01

Abstract

Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China, China (Grant No. 82104432 and U19A2013), the National Key Research and Development Program of China, China (Grant No. 2019YFC1709902), the Science and Technology Development Plan Project of Jilin Province, China (Grant No. YDZJ202201ZYTS270, 202002053JC and 20200201419JC), and the Jilin Provincial Administration of Traditional Chinese Medicine, China (Grant No. 20222222). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

References

  1. Han J, Li Q, Ma Z, Fan J. Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion. Pharmacology & Therapeutics 2017;177:146-73. https://doi.org/10.1016/j.pharmthera.2017.03.005
  2. Liu F, Lu J, Manaenko A, Tang J, Hu Q. Mitochondria in ischemic stroke: new insight and implications. Aging and Disease 2018;9:924-37. https://doi.org/10.14336/AD.2017.1126
  3. Kumar R, Bukowski M, Wider J, Reynolds C, Calo L, Lepore B, et al. Mitochondrial dynamics following global cerebral ischemia. Mol Cell Neurosci. 2016;76:68-75. https://doi.org/10.1016/j.mcn.2016.08.010
  4. Gao S, Hu J. Mitochondrial fusion: the machineries in and out. Trends in Cell Biology 2021;31:62-74. https://doi.org/10.1016/j.tcb.2020.09.008
  5. Ten V, Galkin A. Mechanism of mitochondrial complex I damage in brain ischemia/reperfusion injury. A Hypothesis. Mol Cell Neurosci. 2019;100:103408.
  6. Chipuk J, Mohammed J, Gelles J, Chen Y. Mechanistic connections between mitochondrial biology and regulated cell death. Developmental Cell 2021;56:1221-33. https://doi.org/10.1016/j.devcel.2021.03.033
  7. Chen X, Wang Q, Shao M, Ma L, Guo D, Wu Y, et al. Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARalpha pathway. Biomed Pharmacother 2019;120:109487.
  8. Liu Q, Dong Q. NR4A2 exacerbates cerebral ischemic brain injury via modulating microRNA-652/mul1 pathway. Neuropsychiatric Disease and Treatment 2020;16:2285-96. https://doi.org/10.2147/NDT.S265601
  9. Burte F, Carelli V, Chinnery P, Yu-Wai-Man P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nature Reviews Neurology 2015;11:11-24. https://doi.org/10.1038/nrneurol.2014.228
  10. Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli L, Witzig M, et al. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metabol. 2018;27:657-66. e5. https://doi.org/10.1016/j.cmet.2018.01.011
  11. Igarashi R, Yamashita S, Yamashita T, Inoue K, Fukuda T, Fukuchi T, et al. Gemcitabine induces Parkin-independent mitophagy through mitochondrial-resident E3 ligase MUL1-mediated stabilization of PINK1. Sci Rep. 2020;10:1465.
  12. Yuan Y, Li X, Xu Y, Zhao H, Su Z, Lai D, et al. Mitochondrial E3 ubiquitin ligase 1 promotes autophagy flux to suppress the development of clear cell renal cell carcinomas. Cancer Sci. 2019;110:3533-42. https://doi.org/10.1111/cas.14192
  13. Puri R, Cheng X, Lin M, Huang N, Sheng Z. Defending stressed mitochondria: uncovering the role of MUL1 in suppressing neuronal mitophagy. Autophagy 2020;16:176-8. https://doi.org/10.1080/15548627.2019.1687216
  14. Sharma A, Lee H. Ginsenoside compound K: insights into recent studies on pharmacokinetics and health-promoting activities. Biomolecules 2020;10.
  15. Huang Q, Lou T, Wang M, Xue L, Lu J, Zhang H, et al. Compound K inhibits autophagy-mediated apoptosis induced by oxygen and glucose deprivation/reperfusion via regulating AMPK-mTOR pathway in neurons. Life Sci. 2020;254:117793.
  16. Oh J, Jeong J, Park S, Chun S. Ginsenoside compound K induces adult hippocampal proliferation and survival of newly generated cells in young and elderly mice. Biomolecules 2020;10.
  17. Oh J, Kim J. Compound K derived from ginseng: neuroprotection and cognitive improvement. Food & Function 2016;7:4506-15. https://doi.org/10.1039/C6FO01077F
  18. Park J, Shin J, Jung J, Hyun J, Van Le T, Kim D, et al. Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice. J Pharmacol Exp Therapeut. 2012;341:59-67. https://doi.org/10.1124/jpet.111.189035
  19. Qi H, Zhang Z, Liu J, Chen Z, Huang Q, Li J, et al. Comparisons of isolation methods, structural features, and bioactivities of the polysaccharides from three common panax species: a review of recent progress. Molecules. 2021;26.
  20. Huang Q, Su H, Qi B, Wang Y, Yan K, Wang X, et al. A SIRT1 activator, ginsenoside rc, promotes energy metabolism in cardiomyocytes and neurons. J Am Chem Soc. 2021;143:1416-27. https://doi.org/10.1021/jacs.0c10836
  21. Cheng CQ, Wan Y, Yang W, Tian M, Wang Y, He H, et al. Gastrodin protects H9c2 cardiomyocytes against oxidative injury by ameliorating imbalanced mitochondrial dynamics and mitochondrial dysfunction. Acta Pharmacol Sin 2020;41:1314-27. https://doi.org/10.1038/s41401-020-0382-x
  22. Zhang Q, Wang Z, Miao L, Wang Y, Chang L, Guo W, et al. Neuroprotective effect of SCM-198 through stabilizing endothelial cell function. Oxid Med Cell Longev 2019;2019:7850154.
  23. Geng J, Liu W, Gao J, Jiang C, Fan T, Sun Y, et al. Andrographolide alleviates Parkinsonism in MPTP-PD mice via targeting mitochondrial fission mediated by dynamin-related protein 1. Br J Pharmacol 2019;176:4574-91. https://doi.org/10.1111/bph.14823
  24. Lilley E, Stanford S, Kendall D, Alexander S, Cirino G, Docherty J, et al. ARRIVE 2.0 and the British journal of pharmacology: updated guidance for 2020. Br J Pharmacol 2020;177:3611-6. https://doi.org/10.1111/bph.15178
  25. Raimundo L, Paterna A, Calheiros J, Ribeiro J, Cardoso D, Piga I, et al. BBIT20 inhibits homologous DNA repair with disruption of the BRCA1-BARD1 interaction in breast and ovarian cancer. Br J Pharmacol. 2021;178:3627-47. https://doi.org/10.1111/bph.15506
  26. Iwata R, Casimir P, Vanderhaeghen P. Mitochondrial dynamics in postmitotic cells regulate neurogenesis. Science (New York, NY) 2020;369:858-62. https://doi.org/10.1126/science.aba9760
  27. Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, et al. Different roles of mitochondria in cell death and inflammation: focusing on mitochondrial quality control in ischemic stroke and reperfusion. Biomedicines 2021;9.
  28. Zhao H, Pan W, Chen L, Luo Y, Xu R. Nur77 promotes cerebral ischemia-reperfusion injury via activating INF2-mediated mitochondrial fragmentation. Journal of Molecular Histology 2018;49:599-613. https://doi.org/10.1007/s10735-018-9798-8
  29. Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annual Review of Physiology 2016;78:505-31. https://doi.org/10.1146/annurev-physiol-021115-105011
  30. Ma R, Ma L, Weng W, Wang Y, Liu H, Guo R, et al. DUSP6 SUMOylation protects cells from oxidative damage via direct regulation of Drp1 dephosphorylation. Sci Adv 2020;6. eaaz0361.
  31. Anzell A, Maizy R, Przyklenk K, Sanderson T. Mitochondrial quality control and disease: insights into ischemia-reperfusion injury. Molecular Neurobiology 2018;55:2547-64. https://doi.org/10.1007/s12035-017-0503-9
  32. Zuo W, Yang P, Chen J, Zhang Z, Chen N. Drp-1, a potential therapeutic target for brain ischaemic stroke. British Journal of Pharmacology 2016;173:1665-77. https://doi.org/10.1111/bph.13468
  33. Yang J, Mukda S, Chen S. Diverse roles of mitochondria in ischemic stroke. Redox Biology 2018;16:263-75. https://doi.org/10.1016/j.redox.2018.03.002
  34. Yin Y, Sun G, Li E, Kiselyov K, Sun D. ER stress and impaired autophagy flux in neuronal degeneration and brain injury. Ageing Research Reviews 2017;34:3-14. https://doi.org/10.1016/j.arr.2016.08.008
  35. Chen W, Sun Y, Liu K, Sun X. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regeneration Research 2014;9:1210-6. https://doi.org/10.4103/1673-5374.135329
  36. Li X, Huang Q, Wang M, Yan X, Song X, Ma R, et al. Compound K inhibits autophagy-mediated apoptosis through activation of the PI3K-akt signaling pathway thus protecting against ischemia/reperfusion injury. Cell Physiol Biochem: Int J Exp Cell Physiol Biochem Pharmacol 2018;47:2589-601. https://doi.org/10.1159/000491655
  37. Chouchani E, Pell V, James A, Work L, Saeb-Parsy K, Frezza C, et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metabol 2016;23:254-63. https://doi.org/10.1016/j.cmet.2015.12.009
  38. Ishikawa T, Shimizu M, Kohara S, Takizawa S, Kitagawa Y, Takagi S. Appearance of WBC-platelet complex in acute ischemic stroke, predominantly in atherothrombotic infarction. Journal of Atherosclerosis and Thrombosis 2012;19:494-501. https://doi.org/10.5551/jat.10637
  39. Bladowski M, Gawrys J, Gajecki D, Szahidewicz-Krupska E, Sawicz-Bladowska A, Doroszko A. Role of the platelets and nitric oxide biotransformation in ischemic stroke: a translative review from bench to bedside. Oxidative Medicine and Cellular Longevity 2020;2020:2979260.
  40. Han J, Wang Y, Cai E, Zhang L, Zhao Y, Sun N, et al. Study of the effects and mechanisms of ginsenoside compound K on myelosuppression. J Agric Food Chem 2019;67:1402-8. https://doi.org/10.1021/acs.jafc.8b06073