• 제목/요약/키워드: Neural Net

검색결과 763건 처리시간 0.02초

Convolutional Neural Network를 통한 대규모 한글 데이터 학습 (Learning of Large-Scale Korean Character Data through the Convolutional Neural Network)

  • 김연규;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.97-100
    • /
    • 2016
  • CNN(Convolutinal Neural Network)을 사용하여 다양한 분야에 대한 심화 학습이 진행되고 있으며 이미지 인식 분야에서 특히 높은 성능을 보이고 있다. 본 논문에서는 5,000,000개 이상의 대규모 한글 문자 데이터베이스를 사용하여 한글을 Convolutional Neural Network에 학습 시킨 후 테스트 정확도를 확인한다. 실험에 사용된 CNN 구조는 AlexNet에 기반하여 새로 만들어진 KCR(Korean Character Recognition)-AlexNet 이며 학습 결과 98% 이상의 테스트 정확도를 보였다. 실험에 사용된 데이터베이스는 대규모 한글 데이터 데이터베이스인 PHD08로 총 2,350개의 한글 문자에 대해 각 문자마다 2,187개의 샘플을 가져 총 5,139,450 개의 데이터가 존재한다. 본 연구를 통해 KCR-AlexNet이 한글 데이터베이스인 PHD08을 학습하는데 우수한 구조임을 보인다.

  • PDF

철근콘크리트 손상 특성 추출을 위한 최적 컨볼루션 신경망 백본 연구 (A Study on Optimal Convolutional Neural Networks Backbone for Reinforced Concrete Damage Feature Extraction)

  • 박영훈
    • 대한토목학회논문집
    • /
    • 제43권4호
    • /
    • pp.511-523
    • /
    • 2023
  • 철근콘크리트 손상 감지를 위한 무인항공기와 딥러닝 연계에 대한 연구가 활발히 진행 중이다. 컨볼루션 신경망은 객체 분류, 검출, 분할 모델의 백본으로 모델 성능에 높은 영향을 준다. 사전학습 컨볼루션 신경망인 모바일넷은 적은 연산량으로 충분한 정확도가 확보 될 수 있어 무인항공기 기반 실시간 손상 감지 백본으로 효율적이다. 바닐라 컨볼루션 신경망과 모바일넷을 분석 한 결과 모바일넷이 바닐라 컨볼루션 신경망의 15.9~22.9% 수준의 낮은 연산량으로도 6.0~9.0% 높은 검증 정확도를 가지는 것으로 평가되었다. 모바일넷V2, 모바일넷V3Large, 모바일넷 V3Small은 거의 동일한 최대 검증 정확도를 가지는 것으로 나타났으며 모바일넷의 철근콘트리트 손상 이미지 특성 추출 최적 조건은 옵티마이저 RMSprop, 드롭아웃 미적용, 평균풀링인 것으로 분석되었다. 본 연구에서 도출된 모바일넷V2 기반 7가지 손상 감지 최대 검증 정확도 75.49%는 이미지 축적과 지속적 학습으로 향상 될 수 있다.

와이어 가공 조건 자동 생성 2 단계 신경망 추정 (Automatic Generation of Machining Parameters of Electric Discharge Wire-Cut Using 2-Step Neuro-Estimation)

  • 이건범;주상윤;왕지남
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.7-13
    • /
    • 1998
  • This paper presents a methodology for determining machining conditions in Electric Discharge Wire-Cut. Unification of two phase neural network approach with an automatic generation of machining parameters is designed. The first phase neural network, which is 1 to M backward-mapping neural net, produces approximate machining conditions. Using approximate conditions, all possible conditions are newly created by the proposed automatic generation procedure. The second phase neural net, which is a M to 1 forward-mapping neural net, determines the best one among the generated candidates. Simulation results with ANN are given to verify that the presenting methodology could apply for determining machining parameters in Electric Discharge Wire-Cut.

  • PDF

An Approximate DRAM Architecture for Energy-efficient Deep Learning

  • Nguyen, Duy Thanh;Chang, Ik-Joon
    • Journal of Semiconductor Engineering
    • /
    • 제1권1호
    • /
    • pp.31-37
    • /
    • 2020
  • We present an approximate DRAM architecture for energy-efficient deep learning. Our key premise is that by bounding memory errors to non-critical information, we can significantly reduce DRAM refresh energy without compromising recognition accuracy of deep neural networks. To validate the key premise, we make extensive Monte-Carlo simulations for several well-known convolutional neural networks such as LeNet, ConvNet and AlexNet with the input of MINIST, CIFAR-10, and ImageNet, respectively. We assume that the highest-order 8-bits (in single precision) and 4-bits (in half precision) are protected from retention errors under the proposed architecture and then, randomly inject bit-errors to unprotected bits with various bit-error-rates. Here, recognition accuracies of the above convolutional neural networks are successfully maintained up to the 10-5-order bit-error-rate. We simulate DRAM energy during inference of the above convolutional neural networks, where the proposed architecture shows the possibility of considerable energy saving up to 10 ~ 37.5% of total DRAM energy.

Robust architecture search using network adaptation

  • Rana, Amrita;Kim, Kyung Ki
    • 센서학회지
    • /
    • 제30권5호
    • /
    • pp.290-294
    • /
    • 2021
  • Experts have designed popular and successful model architectures, which, however, were not the optimal option for different scenarios. Despite the remarkable performances achieved by deep neural networks, manually designed networks for classification tasks are the backbone of object detection. One major challenge is the ImageNet pre-training of the search space representation; moreover, the searched network incurs huge computational cost. Therefore, to overcome the obstacle of the pre-training process, we introduce a network adaptation technique using a pre-trained backbone model tested on ImageNet. The adaptation method can efficiently adapt the manually designed network on ImageNet to the new object-detection task. Neural architecture search (NAS) is adopted to adapt the architecture of the network. The adaptation is conducted on the MobileNetV2 network. The proposed NAS is tested using SSDLite detector. The results demonstrate increased performance compared to existing network architecture in terms of search cost, total number of adder arithmetics (Madds), and mean Average Precision(mAP). The total computational cost of the proposed NAS is much less than that of the State Of The Art (SOTA) NAS method.

비정상심박 검출을 위해 영상화된 심전도 신호를 이용한 비교학습 기반 딥러닝 알고리즘 (Comparative Learning based Deep Learning Algorithm for Abnormal Beat Detection using Imaged Electrocardiogram Signal)

  • 배진경;곽민수;노경갑;이동규;박대진;이승민
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.30-40
    • /
    • 2022
  • 심전도 신호는 개인에 따라 형태와 특징이 다양하므로, 하나의 신경망으로는 분류하기가 어렵다. 주어진 데이터를 직접적으로 분류하는 것은 어려우나, 대응되는 정상 데이터가 있을 경우, 이를 비교하여 정상 및 비정상을 분류하는 것은 상대적으로 쉽고 정확하다. 본 논문에서는 템플릿 군을 이용하여 대표정상심박 정보를 획득하고, 이를 입력 심박에 결합함으로써 심박을 분류한다. 결합된 심박을 영상화한 후, 학습 및 분류를 진행하여, 하나의 신경망으로도 다양한 레코드의 비정상심박을 검출이 가능하였다. 특히, GoogLeNet, ResNet, DarkNet 등 다양한 신경망에 대해서도 비교학습 기법을 적용한 결과, 모두 우수한 검출성능을 가졌으며, GoogLeNet의 경우 99.72%의 민감도로, 실험에 사용된 신경망 중 가장 우수한 성능을 가졌음을 확인하였다.

앙상블 학습 알고리즘을 이용한 컨벌루션 신경망의 분류 성능 분석에 관한 연구 (A Study on Classification Performance Analysis of Convolutional Neural Network using Ensemble Learning Algorithm)

  • 박성욱;김종찬;김도연
    • 한국멀티미디어학회논문지
    • /
    • 제22권6호
    • /
    • pp.665-675
    • /
    • 2019
  • In this paper, we compare and analyze the classification performance of deep learning algorithm Convolutional Neural Network(CNN) ac cording to ensemble generation and combining techniques. We used several CNN models(VGG16, VGG19, DenseNet121, DenseNet169, DenseNet201, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, GoogLeNet) to create 10 ensemble generation combinations and applied 6 combine techniques(average, weighted average, maximum, minimum, median, product) to the optimal combination. Experimental results, DenseNet169-VGG16-GoogLeNet combination in ensemble generation, and the product rule in ensemble combination showed the best performance. Based on this, it was concluded that ensemble in different models of high benchmarking scores is another way to get good results.

다양한 합성곱 신경망 방식을 이용한 모바일 기기를 위한 시작 단어 검출의 성능 비교 (Performance comparison of wake-up-word detection on mobile devices using various convolutional neural networks)

  • 김상홍;이보원
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.454-460
    • /
    • 2020
  • 음성인식 기능을 제공하는 인공지능 비서들은 정확도가 뛰어난 클라우드 기반의 음성인식을 통해 동작한다. 클라우드 기반의 음성인식에서 시작 단어 인식은 대기 중인 기기를 활성화하는 데 중요한 역할을 한다. 본 논문에서는 공개 데이터셋인 구글의 Speech Commands 데이터셋을 사용하여 스펙트로그램 및 멜-주파수 캡스트럼 계수 특징을 입력으로 하여 모바일 기기에 대응한 저 연산 시작 단어 검출을 위한 합성곱 신경망의 성능을 비교한다. 본 논문에서 사용한 합성곱 신경망은 다층 퍼셉트론, 일반적인 합성곱 신경망, VGG16, VGG19, ResNet50, ResNet101, ResNet152, MobileNet이며, MobileNet의 성능을 유지하면서 모델 크기를 1/25로 줄인 네트워크도 제안한다.

Deep Convolution Neural Networks in Computer Vision: a Review

  • Yoo, Hyeon-Joong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권1호
    • /
    • pp.35-43
    • /
    • 2015
  • Over the past couple of years, tremendous progress has been made in applying deep learning (DL) techniques to computer vision. Especially, deep convolutional neural networks (DCNNs) have achieved state-of-the-art performance on standard recognition datasets and tasks such as ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). Among them, GoogLeNet network which is a radically redesigned DCNN based on the Hebbian principle and scale invariance set the new state of the art for classification and detection in the ILSVRC 2014. Since there exist various deep learning techniques, this review paper is focusing on techniques directly related to DCNNs, especially those needed to understand the architecture and techniques employed in GoogLeNet network.

Fight Detection in Hockey Videos using Deep Network

  • Mukherjee, Subham;Saini, Rajkumar;Kumar, Pradeep;Roy, Partha Pratim;Dogra, Debi Prosad;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • 제4권4호
    • /
    • pp.225-232
    • /
    • 2017
  • Understanding actions in videos is an important task. It helps in finding the anomalies present in videos such as fights. Detection of fights becomes more crucial when it comes to sports. This paper focuses on finding fight scenes in Hockey sport videos using blur & radon transform and convolutional neural networks (CNNs). First, the local motion within the video frames has been extracted using blur information. Next, fast fourier and radon transform have been applied on the local motion. The video frames with fight scene have been identified using transfer learning with the help of pre-trained deep learning model VGG-Net. Finally, a comparison of the methodology has been performed using feed forward neural networks. Accuracies of 56.00% and 75.00% have been achieved using feed forward neural network and VGG16-Net, respectively.