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Abstract: Over the past couple of years, tremendous progress has been made in applying deep 
learning (DL) techniques to computer vision. Especially, deep convolutional neural networks 
(DCNNs) have achieved state-of-the-art performance on standard recognition datasets and tasks 
such as ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). Among them, GoogLeNet 
network which is a radically redesigned DCNN based on the Hebbian principle and scale 
invariance set the new state of the art for classification and detection in the ILSVRC 2014. Since 
there exist various deep learning techniques, this review paper is focusing on techniques directly 
related to DCNNs, especially those needed to understand the architecture and techniques employed 
in GoogLeNet network.        
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1. Introduction 

Over the last couple of years, deep learning  techniques 
have made tremendous progress in computer vision, 
especially in the field of object recognition. Deep learning 
is a family of methods that uses deep architectures to learn 
high-level feature representation. (Several much lengthier 
definitions can be found in [1].) When a network has more 
than one hidden layer, it is of deep architecture. The 
essence of deep learning is to compute hierarchical 
features or representations of the observational data, where 
the higher-level features or factors are defined from lower-
level ones.  

The family of deep learning methods have been 
growing increasingly richer, encompassing those of neural 
networks, hierarchical probabilistic models, and a variety 
of unsupervised and supervised feature learning algorithms.  

Active researchers in this area include those at 
University of Toronto, New York University, University of 
Montreal, Stanford University, Google, Baidu, Microsoft 
Research, Facebook, just to name a few. These researchers 
have demonstrated empirical successes of deep learning in 
diverse applications of computer vision, phonetic 
recognition, voice search, conversational speech 

recognition, speech and image feature coding, robotics, 
and so on. 

In this paper we focus on the architecture and training 
methods of deep networks, specifically deep convolutional 
neural networks. 

1.1 History of Neural Networks 
Historically, the concept of deep learning originated 

from artificial neural network research. The history of 
artificial neural network is filled with individuals from 
many different fields, including psychologists and 
physicists. The early model of an artificial neuron is 
introduced by McCulloch and Pitts in 1943 [2]. Their work 
is often acknowledged as the origin of the neural network 
field. They showed that networks of artificial neurons 
could, in principle, compute any arithmetic or logical 
function. 

In 1949, Hebb [3] proposed a mechanism for learning 
in biological neurons, and introduced the Hebb learning 
rule. The Hebb rule is often paraphrased as "Neurons that 
fire together wire together." If the set of input patterns 
used in training are mutually orthogonal, the association 
can be learned by a two-layer pattern associator using 
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Hebbian learning. However, if the set of input patterns are 
not mutually orthogonal, interference may occur and the 
network may not be able to learn associations, resulting in 
a low absolute capacity of the Hebb rule. 

The first practical application of artificial neural 
network came with the invention of the perceptron 
network and associated learning rule by Rosenblatt in the 
late 1950s [4]. With the perceptron network, he 
demonstrated its ability to perform pattern recognition. At 
about the same time, Widrow and Hoff [5] introduced a 
new learning algorithm called the Widrow-Hoff learning 
rule, and used it to train adaptive linear neural networks, 
which were similar to Rosenblatt’s perceptron.  

Unfortunately, both of the networks suffered from the 
same inherent limitations, which were widely publicized in 
a book by Minsky and Papert [6]. They discovered two key 
issues with the computational machines that processed 
neural networks. The first issue was that single-layer 
neural networks were incapable of solving the exclusive-or 
(XOR) problem. The second significant issue was that 
computers were not sophisticated enough to effectively 
handle the long run time required by large neural networks. 
Many people, influenced by Minsky and Papert, believed 
that further research on neural networks was a dead end. 
The book caused many researchers to leave the field and 
nearly killed neural net research for more than a decade.  

However, some important work continued during the 
1970s. Kohonen [7] and Anderson [8] independently and 
separately developed new neural networks that could act as 
memories. Grossberg [9] was also very active during this 
period in the investigation of self-organizing networks. 

During the 1980s research in neural networks increased 
dramatically. The impediments in the 1960s were 
overcome, and, in addition, important new concepts were 
introduced and responsible for the rebirth of neural 
networks. Firstly, in 1982, physicist Hopfield used 
statistical mechanics to explain the operation of a certain 
class of recurrent network, which could be used as an 
associative memory [10]. Another key development was 
the backpropagation algorithm, a generalized form of the 
delta rule, for training multilayer perceptron networks. 
Although the derivation procedure had previously been 
published by Werbos in [11], the most influential 
publication of the backpropagation algorithm was by 
Rumelhart and McClelland [12]. They showed that this 
method works for the class of semilinear activation 
functions (non-decreasing and differentiable). It was the 
answer to the criticisms Minsky and Papert had made in 
1969. These new development reinvigorated the field of 
neural networks.  

One long-term goal of machine learning research is to 
produce methods that are applicable to highly complex 
tasks, such as perception (vision, audition), reasoning, 
intelligent control, and other artificially intelligent 
behaviors. In order to progress toward this goal, algorithms 
that can learn highly complex functions with minimal need 
for prior knowledge, and with minimal human intervention 
must be discovered. However, shallow architectures can be 
very inefficient in terms of required number of 
computational elements and examples. However, for deep 
architectures, there are such backpropagation-specific 

properties that can occasionally be a problem as slow 
learning speed (the further the weights are from the output 
layer, the slower backpropagation learns) and overfitting. 

Researchers tried using stochastic gradient descent and 
backpropagation to train deep networks. Unfortunately, 
except for a few special architectures, they didn't have 
much luck. The networks would learn, but very slowly, 
and in practice often too slowly to be useful.  

Building on Rumelhart et al. [12], LeCun et al. [13] 
showed that stochastic gradient descent via 
backpropagation was effective for training convolutional 
neural networks (CNNs). CNNs saw commercial use with 
[14], but then fell out of fashion with the rise of support 
vector machines and other, much simpler methods such as 
linear classifiers.  

Promising new methods like Hinton et al.’s [15] have 
been developed that enable learning in deep neural nets, 
and in 2012, Krizhevsky et al. [16] rekindled interest in 
CNNs by showing substantially higher image classification 
accuracy on the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC, http://www.image-net.org/). These 
techniques have enabled much deeper (and larger) 
networks to be trained - people now routinely train 
networks with many hidden layers. And, it turns out that 
these perform far better on many problems than shallow 
neural networks [16-18]. 

The rest of this paper is organized as follows. The next 
section describes in chronological order important 
historical events and techniques needed to understand the 
architecture and training methods of current state of the art 
deep convolutional neural network, GoogLeNet. Then the 
GoogLeNet network is investigated deeper in Section 3. 
Finally, we conclude this paper in Section 4. 

2. Deep Convolution Neural Networks 

Shallow architectures have been shown effective in 
solving simple or well-constrained problems, but their 
limited modeling and representational power can cause 
difficulties when dealing with more complicated real-
world applications involving natural signals such as natural 
image and visual scenes. Human information processing 
mechanisms suggest the need of deep architectures for 
extracting complex structure and building internal 
representation form rich sensory inputs. However, training 
deep neural networks is hard, as backpropagated gradients 
quickly vanish exponentially in the number of layers. A set 
of techniques has been developed that enable learning in 
deep neural networks. People now routinely train networks 
with many hidden layers. And, it turns out that these 
perform far better on many problems than shallow neural 
networks. Deep neural networks have finally attracted 
wide-spread attention. In this section, we describe some 
important techniques and events necessary to understand 
the deep convolutional neural network called GoogLeNet. 
Convolutional networks are an attempt to solve the 
dilemma between small networks that cannot learn the 
training set, and large networks that seem over-
parameterized. 
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2.1 Neocognitron 
A hierarchical multilayered artificial neural network 

called neocognitron was proposed by Fukushima in 1980 
[19]. Local features in the input are integrated gradually 
and classified in the higher layers. Fig. 1 shows its 
architecture. Later, in 1989, the idea of local feature 
integration is adapted in LeCun et al.’s convolutional 
neural networks [13]. 

The neocognitron was specifically proposed to address 
the problem of handwritten character recognition. It is a 
hierarchical network with many pairs of layers 
corresponding to simple (S layer) and complex (C layer) 
cells with a very sparse and localized pattern of 
connectivity between layers.  

The number of planes of simple cells and of complex 
cells within a pair of S and C layers being the same, these 
planes are paired, and the complex plane cells process the 
outputs of the simple plane cells. The simple cells are 
trained so that the response of a simple cell corresponds to a 
specific portion of the input image. If the same part of the 
image occurs with some distortion, in terms of scaling or 
rotation, a different set of simple cells responds to it. The 
complex cells output to indicate that some simple cell they 
correspond to did fire. While simple cells respond to what is 
in a contiguous region in the image, complex cells respond 
on the basis of a larger region. As the process continues to 
the output layer, the C-layer component of the output layer 
responds, corresponding to the entire image presented in the 
beginning at the input layer. The neocognitron, however, 
lacked a supervised training algorithm. 

2.2 CNN 
Building on Rumelhart et al. [12], LeCun et al. [13] 

showed that stochastic gradient descent via 
backpropagation was effective for training convolutional 
neural networks, a class of models that extend the 
neocognitron. LeCun et al. presented a convolutional 
neural network consisting of 3 hidden layers including 2 
convolutional layers, and 64,660 connections. They 
applied it to handwritten zip code recognition. Fig. 2 
shows its architecture. Unlike previous works, the network 

was directly trained on a low-level representation of data 
that had minimal preprocessing (as opposed to elaborate 
feature extraction), thus demonstrating the ability of 
backpropagation networks to deal with large amounts of 
low-level information. 

The first hidden layer is composed of several planes 
called feature maps. Distinctive features of an object can 
appear at various locations on the input image. It seems 
judicious to have all units in a plane share the same set of 
weights, thereby detecting the same feature at different 
locations. Thus the detection of a particular feature at any 
location on the input can be easily done using the "weight 
sharing" technique. Since the exact position of the feature 
is not important, the feature maps need not have as many 
units as the input. However, units do not share biases. Due 
to the weight sharing, the network has few free parameters. 
For example, though layer H1 has 19,968 connections, it 
has only 1,068 free parameters (768 biases plus 25 times 
12 feature kernels).  

The connection scheme between H1 and H2 is slightly 
more complicated: Each unit in H2 combines local 
information coming from 8 of the 12 different feature 
maps in H1. Its receptive field is composed of eight 5 by 5 
neighborhoods centered on units that are at identical 
positions within each of the eight maps. Once again, all 
units in a given map are constrained to have identical 
weight vectors. Layer H3 has 30 units, and is fully 
connected to H2. The output layer is also fully connected 
to H3. In summary, the network has 1,256 units, 64,660 
connections, and 9,760 independent parameters.  

The target values for the output units were chosen 
within the quasilinear range of the sigmoid. This prevents 
the weights from growing indefinitely and prevents the 
output units from operating in the flat spot of the sigmoid. 

During each learning experiment, the patterns were 
repeatedly presented in a constant order. The weights were 
updated according to the stochastic gradient or "on-line" 
procedure. From empirical study (supported by theoretical 
arguments), the stochastic gradient was found to converge 
much faster than the true gradient, especially on large, 
redundant data bases. It also finds solutions that are more 
robust. 

Fig. 1. Hierarchical structure of the neocognitron
network (Adapted from [19]). 

 

 

Fig. 2. Architecture of CNN in 1989 (Adapted from [13]).
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2.3 LeNet-5 
Convolutional networks combine three architectural 

ideas to ensure some degree of shift, scale, and distortion 
invariance: local receptive fields, shared weights (or 
weight replication), and spatial or temporal sub-sampling. 
Fig. 3 shows the architecture of LeNet-5, a convolutional 
neural network proposed by LeCun et al. in 1998 [14], 
which was used commercially for reading bank checks. 

A convolutional layer is composed of several feature 
maps (with different weight vectors), so that multiple 
features can be extracted at each location. The receptive 
fields of contiguous units in a feature map are centered on 
correspondingly contiguous units in the previous layer. 
Therefore receptive fields of neighboring units overlap. All 
the units in a feature map share the same set of weights 
and the same bias so they detect the same feature at all 
possible locations on the input. 

A sequential implementation of a feature map would 
scan the input image with a single unit that has a local 
receptive field, and store the states of this unit at 
corresponding locations in the feature map. This operation 
is equivalent to a convolution, followed by an additive bias 
and squashing function, hence the name convolutional 
network. 

An interesting property of convolutional layers is that if 
the input image is shifted, the feature map output will be 
shifted by the same amount, but will be left unchanged 
otherwise. This property is at the basis of the robustness of 
convolutional networks to shifts and distortions of the 
input. A large degree of invariance to geometric 

transformations of the input can be achieved with this 
progressive reduction of spatial resolution compensated by 
a progressive increase of the richness of the representation 
(the number of feature maps). 

The convolution/subsampling combination, inspired by 
Hubel and Wiesel’s notions of "simple" and "complex"  
cells [20], was implemented in Fukushima's Neocognitron 
[19], though no globally supervised learning procedure 
such as backpropagation was available then.  

Starting with LeNet-5 [14], convolutional neural 
networks (CNN) have typically had a standard structure – 
stacked convolutional layers (optionally followed by 
contrast normalization and maxpooling) are followed by 
one or more fully-connected layers. All the weights are 
learned with backpropagation. Variants of this basic design 
are prevalent in the image classification literature and have 
yielded the best results to-date on MNIST, CIFAR and 
most notably on the ImageNet classification challenge [16, 
18, 21]. For larger datasets such as Imagenet, the recent 
trend has been to increase the number of layers [22] and 
layer size [23, 24], while using dropout [25] to address the 
problem of overfitting. 

2.4 Multi-Scale ConvNet 
Sermanet et al. [26] modified the traditional ConvNet 

(convolutional networks) architecture by feeding 1st stage 
features in addition to 2nd stage features to the classifier as 
shown in Fig. 4. Each stage is composed of a 
(convolutional) filter bank layer, a non-linear transform 
layer, and a spatial feature pooling layer. ConvNets are 

 

 

Fig. 3. Architecture of LeNet-5, a Convolutional Neural Network, here for characters recognition. Each plane is a
feature map, i.e., a set of units whose weights are constrained to be identical (Adapted from [14]). 

 

 

Fig. 4. A 2-stage ConvNet architecture. The input is processed in a feedforward manner through two stage of
convolutions and subsampling, and finally classified with a linear classifier. The output of the 1st stage is also fed
directly to the classifier as higher-resolution features. (Adapted from [26]). 
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generally composed of one to three stages, capped by a 
classifier composed of one or two additional layers. 

Contrary to Fan et al.’s [27], they used the output of the 
first stage after pooling/subsampling rather than before. 
Additionally, applying a second subsampling stage on the 
branched output yielded higher accuracies than with just 
one. Feeding the outputs of all the stages to the classifier 
allows the classifier to use, not just high-level features, 
which tend to be global, invariant, but with little precise 
details, but also pooled low-level features, which tend to 
be more local, less invariant, and more accurately encode 
local motifs with more precise details. The motivation for 
combining representation from multiple stages in the 
classifier is to provide different scales of receptive fields to 
the classifier. 

When applied to the task of traffic sign classification as 
part of the GTSRB competition, experiments produced a 
new record of 99.17%, above the human performance of 
98.81%.  

2.4 ReLU and Dropout 
Sparsity was  first introduced in computational 

neuroscience in the context of sparse coding in the visual 
system [28]. The neuroscience literature [29, 30] indicates 
that cortical neurons are rarely in their maximum 
saturation regime, and suggests that their activation 
function can be approximated by a rectifier.  

In 2011, Glorot et al. [31] showed that using a 
rectifying non-linearity gives rise to real zeros of 
activations and thus truly sparse representations. They 
showed that rectifying neurons are an even better model of 
biological neurons and yield equal or better performance 
than hyperbolic tangent networks in spite of the hard non-
linearity and non-differentiability at zero, creating sparse 
representations with true zeros, which seem remarkably 
suitable for naturally sparse data. Their experiments on 
image and text data indicated that training proceeds better 
when the artificial neurons are either off or operating 
mostly in a linear regime. Rectifying activation allowed 
deep networks to achieve their best performance without 
unsupervised pre-training on purely supervised tasks with 
large labeled datasets. 

In 2012, Krizhevsky et al. [16] rekindled interest in 
CNNs by showing substantially higher image classification 
accuracy on the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) with their model achieving an error 
rate of 16.4%, compared to the 2nd place result of 26.1%. 
They used purely supervised learning, suggesting that 
classical backpropagation does well even without 
unsupervised pre-training. Their success resulted from 
training a large, deep CNN, shown in Fig. 5, on 1.2 million 
labeled images, together with a few twists on LeCun’s 
CNN, i.e., max(x, 0) rectifying non-linearities and 
“dropout” regularization. 

In terms of training time with gradient descent, the 
saturating nonlinearities f(x) = tanh(x) or f(x) = (1 + e-x)-1 
are much slower than the non-saturating nonlinearity f(x) = 
max(x, 0). Following Nair and Hinton [32], they refer to 
neurons with this nonlinearity as Rectified Linear Units 
(ReLUs). Deep convolutional neural networks with ReLUs 
train several times faster than their equivalents with tanh 
units. Faster learning has a great influence on the 
performance of large models trained on large datasets. 

When a large feedforward neural network is trained on 
a small training set, it typically performs poorly on held-
out test data due to its high capacity. To prevent this 
“overfitting”, they employed a regularization approach 
called “dropout” that stochastically sets half the activations 
within a hidden layer to zero for each training sample 
during training. They used dropout in the first two fully-
connected layers (See Fig. 6). Thereby a hidden unit 
cannot rely on other hidden units being present. This 
prevents complex co-adaptations on the training data. It 
has been shown to deliver significant gains in performance 
across a wide range of problems.  

Another way to view the dropout procedure is as a very 
efficient way of performing model averaging with neural 
networks. A good way to reduce the error on the test set is 
to average the predictions produced by a very large 
number of different networks. The standard way to do this 
is to train many separate networks and then to apply each 
of these networks to the test data, but this is 
computationally expensive during both training and testing. 
Random dropout makes it possible to train a huge number 
of different networks in a reasonable time. There is almost 
certainly a different network for each presentation of each 
training case but all of these networks share the same 
weights for the hidden units that are present. 

Dropout does not seem to have the same benefits for 
convolutional layers, which are common in many networks 
designed for vision tasks. Dropout roughly doubles the 

 

 

Fig. 5. Architecture of Krizhevsky et al.’s DCNN (Adapted from [16]). 
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number of iterations required to converge. Without 
dropout, their network exhibited substantial overfitting. 

They achieved record-breaking results on a highly 
challenging dataset using purely supervised learning. They 
found that the depth (five convolutional and three fully-
connected layers) really was important for achieving their 
results by observing that removing convolutional layer 
(each of which contains no more than 1% of the model’s 
parameters) resulted in inferior performance (a loss of 
about 2% for the top-1 performance of the network). 

2.5 ConvNet Visualization 
Though large ConvNets (convolutional networks) have 

recently demonstrated impressive classification 
performance, there is no clear understanding of why they 
perform so well, or how they might be improved, which is 
deeply unsatisfactory from a scientific standpoint. Without 
clear understanding of how and why they work, the 
development of better models is reduced to trial-and-error.  

In 2013, Zeiler et al. addressed both issues [24]. They 
introduced a visualization technique that gives insight into 
the function of intermediate feature layers and the 
operation of the classifier. The visualization technique uses 
a multi-layered deconvolutional network (deConvNet), as 
proposed by Zeiler et al. [33], to project the feature 
activations back to the input pixel space. DeConvNets are 
not used in any learning capacity, just as a probe of an 
already trained ConvNet. They also performed an ablation 
study to discover the performance contribution from 
different model layers. This enabled them to find model 
architectures that outperformed Krizhevsky et al. [16] on 
the ImageNet classification benchmark. 

2.6 Sparsely Connected Architecture 
Bigger size typically means two drawbacks: a larger 

number of parameters, which makes the enlarged network 
more prone to overfitting, especially if the number of 
labeled examples in the training set is limited; and the 
dramatically increased use of computational resources, 
which is always finite, in a deep vision network where 
convolutional layers are chained.  

The fundamental way of solving both issues would be 
by ultimately moving from fully connected to sparsely 
connected architectures, even inside the convolutions. 
Besides mimicking biological systems, this would also 
have the advantage of firmer theoretical underpinnings due 
to the work of Arora et al. [34]: If the probability 

distribution of the dataset is representable by a large, very 
sparse deep neural network, then the optimal network 
structure can be learned layerwise by analyzing the 
correlation statistics of the activations of the last layer and 
clustering neurons with highly correlated outputs. Szegedy 
et al. [18] took inspiration and guidance from this 
theoretical work, and their GoogLeNet DCNN 
significantly outperformed the ILSVRC 2014 classification 
and detection challenges. 

3. A Deeper and Wider CNN 

In this section the important factors in architecture and 
training methods of GoogLeNet’s classification 
submission and detection submission are described. Most 
of the content in this section is from Szegedy et al.’s [18]. 

Szegedy et al.’s GoogLeNet won the classification and 
object recognition challenges in the ILSVRC 2014 by 
setting the new state of the art. GoogLeNet, a radically 
redesigned DCNN, used a new variant of convolutional 
neural network called “Inception” for classification, and 
the R-CNN [17] for detection. GoogLeNet submission to 
ILSVRC 2014 actually uses 12x fewer parameters than the 
winning architecture of Krizhevsky et al. [16] from two 
years ago, while being significantly more accurate. 
Compared to the 2013 result, the detection accuracy has 
almost doubled from 22.6% to 43.9%. The ILSVRC 
detection task is to produce bounding boxes around objects 
in images among 200 possible classes. 

GoogLeNet uses a significantly deeper and wider 
convolutional neural network architecture than traditional 
DCNNs at the cost of a modest growth in evaluation time. 
Fig. 7 shows a schematic view of GoogLeNet network 
which includes 9 repeated layers of so-called Inception 
module. Fig. 8 shows Inception module with dimension 
reduction. Inspired by a neuroscience model of primate 
visual cortex, the Inception model uses a series of trainable 
filters of different sizes in order to handle multiple scales. 
The main idea of the Inception architecture is based on 
finding out how an optimal local sparse structure in a 
convolutional vision network can be approximated and 
covered by readily available dense components. An 
alternative parallel pooling path in the module is added in 
each stage since pooling operations have been essential for 
the success in current state of the art convolutional 
networks.  

Since even a modest number of 5x5 convolutions can 
be prohibitively expensive on top of a convolutional layer 
with a large number of filters, 1x1 convolutions are placed 
before the expensive 3x3 and 5x5 convolutions as 
dimension reduction module. This allows for not just 
increasing the depth, but also the width of the networks 
without significant performance penalty. The resultant 
architecture leads to over 10x reduction in the number of 
parameters compared to most state of the art vision 
networks, which reduces overfitting during training and 
allows the system to perform inference with low memory 
footprint. 

All the convolutions, including those inside the 
Inception modules, use rectified linear activation. However, 

 

Fig. 6. Sparse propagation of activations and gradients
(Adapted from [31]). 
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given the relatively large depth of the network, the ability 
to propagate gradients back through all the layers in an 
effective manner was a concern. To solve this issue, 
inspired by [34] in which a layer-by-layer construction is 
suggested, they add auxiliary classifiers connected to the 
layers in the middle of the network during training, 
expecting to encourage discrimination in the lower stages 
in the classifier, increase the gradient signal that gets 
propagated back, and provide additional regularization. 

However, the biggest gains in object-detection have 
come from the synergy of deep architectures and classical 
computer vision, like the R-CNN algorithm by Girshick et 
al. [17]. For classification challenge entry, several ideas 
from the work of [35] were incorporated and evaluated, 
specifically as they relate to image sampling during 
training and evaluation. Their approach yielded solid 
evidence that moving to sparser architectures is feasible 
and useful idea in general. 

4. Conclusions 

Deep learning techniques have made tremendous 
progress in computer vision, and are significantly 
outperforming other techniques, and even humans in 
certain limited recognition tests. Most of this progress is 
not just the result of more powerful hardware, larger 
datasets and bigger models, but mainly a consequence of 

new ideas, algorithms and improved network architectures.  
Although the tremendous progress of this new 

technology is very impressive and encouraging, it is still 
difficult to predict the future success of deep neural 
networks. Remembering that we still know very little of 
the brain mechanism and have many orders of magnitude 
to go in order to match the infero-temporal pathway of the 
primate visual system, the most important advances in 
deep neural networks certainly lie in the future. 
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