• Title/Summary/Keyword: Network-based UAV communication

Search Result 42, Processing Time 0.026 seconds

Development of Operation Network System and Processor in the Loop Simulation for Swarm Flight of Small UAVs (소형 무인기들의 군집비행을 위한 운영 네트워크 시스템과 PILS 개발)

  • Kim, Sung-Hwan;Cho, Sang-Ook;Cho, Seong-Beom;Park, Choon-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.433-438
    • /
    • 2012
  • In this paper, a operation network system equipped with onboard wireless communication systems and ground-based mission control systems is proposed for swarm flight of small UAVs. This operating system can be divided into two networks, UAV communication network and ground control system. The UAV communication network is intend to exchange the informations of navigation, mission and flight status with minimum time delay. The ground control system consisted of mission control systems and UDP network. Proposed operation network system can make a swarm flight of various UAVs, execute complex missions decentralizing mission to several UAVs and cooperte several missions. Finally, PILS environments are developed based on the total operating system.

Combined time bound optimization of control, communication, and data processing for FSO-based 6G UAV aerial networks

  • Seo, Seungwoo;Ko, Da-Eun;Chung, Jong-Moon
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.700-711
    • /
    • 2020
  • Because of the rapid increase of mobile traffic, flexible broadband supportive unmanned aerial vehicle (UAV)-based 6G mobile networks using free space optical (FSO) links have been recently proposed. Considering the advancements made in UAVs, big data processing, and artificial intelligence precision control technologies, the formation of an additional wireless network based on UAV aerial platforms to assist the existing fixed base stations of the mobile radio access network is considered a highly viable option in the near future. In this paper, a combined time bound optimization scheme is proposed that can adaptively satisfy the control and communication time constraints as well as the processing time constraints in FSO-based 6G UAV aerial networks. The proposed scheme controls the relation between the number of data flows, input data rate, number of worker nodes considering the time bounds, and the errors that occur during communication and data processing. The simulation results show that the proposed scheme is very effective in satisfying the time constraints for UAV control and radio access network services, even when errors in communication and data processing may occur.

Recent R&D Trends in Wireless Network Technology based on UAV-assisted FSO Technique (UAV 기반 FSO 무선통신 네트워크 기술 동향)

  • Yeo, C.I.;Heo, Y.S.;Ryu, J.H.;Park, S.W.;Kim, S.C.;Kang, H.S.;Lee, G.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.38-49
    • /
    • 2020
  • In recent years, the unmanned aerial vehicle (UAV) assisted mobile free space optical (FSO) communication technique has attracted considerable attention regarding its aims to provide improved communication conditions for fixed-to-fixed FSO network and promising fronthaul and backhaul solutions for 5G+ wireless networks. This can be attributed to its outstanding advantages such as fast deployment and flexible network configuration. The UAV-assisted mobile FSO system can be used to provide cost-effective internet services in rural and remote areas and in hotspot areas that are characterized by increased data traffic. Additionally, it can be used to provide secure communication services under emergency circumstances. In this report, we review recent R&D trends in wireless network technology employing the UAV-assisted mobile FSO technique and key technologies for mobile FSO wireless networks. Furthermore, we introduce drone-based mobile FSO terminals and control systems that we have developed.

A Resource Scheduling Based on Iterative Sorting for Long-Distance Airborne Tactical Communication in Hub Network (허브 네트워크에서의 장거리 공중 전술 통신을 위한 반복 정렬 기반의 자원 스케줄링 기법)

  • Lee, Kyunghoon;Lee, Dong Hun;Lee, Dae-Hong;Jung, Sung-Jin;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1250-1260
    • /
    • 2014
  • In this paper, a novel resource scheduling, which is used for hub network based long distance airborne tactical communication, is proposed. Recently, some countries of the world has concentrated on developing data rate and networking performance of CDL, striving to keep pace with modern warfare, which is changed into NCW. And our government has also developed the next generation high capacity CDL. In hub network, a typical communication structure of CDL, hybrid FDMA/TDMA can be considered to exchange high rate data among multiple UAVs simultaneously, within limited bandwidth. However, due to different RTT and traffic size of UAV, idle time resource and unnecessary packet transmission delay can occur. And these losses can reduce entire efficiency of hub network in long distance communication. Therefore, in this paper, we propose RTT and data traffic size based UAV scheduling, which selects time/frequency resource of UAVs by using iterative sorting algorithm. The simulation results verified that the proposed scheme improves data rate and packet delay performance in low complexity.

Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Network

  • Li, Zhiwei;Lu, Yu;Wang, Zengguang;Qiao, Wenxin;Zhao, Donghao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4682-4705
    • /
    • 2020
  • The Unmanned Aerial Vehicles (UAV) networks consisting of low-cost UAVs are very vulnerable to smart jammers that can choose their jamming policies based on the ongoing communication policies accordingly. In this article, we propose a novel cloud and edge-aided mobile communication scheme for low-cost UAV network against smart jamming. The challenge of this problem is to design a communication scheme that not only meets the requirements of defending against smart jamming attack, but also can be deployed on low-cost UAV platforms. In addition, related studies neglect the problem of decision-making algorithm failure caused by intermittent ground-to-air communication. In this scheme, we use the policy network deployed on the cloud and edge servers to generate an emergency policy tables, and regularly update the generated policy table to the UAVs to solve the decision-making problem when communications are interrupted. In the operation of this communication scheme, UAVs need to offload massive computing tasks to the cloud or the edge servers. In order to prevent these computing tasks from being offloaded to a single computing resource, we deployed a lightweight game algorithm to ensure that the three types of computing resources, namely local, edge and cloud, can maximize their effectiveness. The simulation results show that our communication scheme has only a small decrease in the SINR of UAVs network in the case of momentary communication interruption, and the SINR performance of our algorithm is higher than that of the original Q-learning algorithm.

A study on UAV (Unmanned Aerial Vehicle) Real Time Location Tracking Control Using Mobile Communication Network (이동통신망을 이용한 UAV(Unmanned Aerial Vehicle) 실시간 위치 추적 관제 방안에 관한 연구)

  • Choi, Hyun-Taek;Ryu, Gab-Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.535-544
    • /
    • 2017
  • In this paper, to overcome the limitation of information transmission and reception according to the RF system of UAV, it is necessary to check the position of many UAVs in flight on the basis of mobile communication and to make the LTE modem lightweight and low power And UAVs that are in operation are received and controlled. Through this study, we proposed a method to control real-time location tracking by connecting high-resolution images to the network anytime and anywhere. For this purpose, we propose the requirements and requirements of LTE modem using real-time high-speed data communication technology (3G, 4G LTE, Bluetooth) by presenting the communication module system of LTE-based UAV. N:N control system concept and implementation technology(Control system structure, control data flow chart, flight planning and transmission, real-time location tracking).

Backhaul transmission scheme for UAV based on improved Nash equilibrium strategy

  • Liu, Lishan;Wu, Duanpo;Jin, Xinyu;Cen, Shuwei;Dong, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2666-2687
    • /
    • 2022
  • As a new alternative communication scheme in 5G, unmanned aerial vehicle (UAV) is used as a relay in the remote base station (BS) for assistant communication. In order to ameliorate the quality of the backhaul link, a UAV backhaul transmission scheme based on improved Nash equilibrium (NE) strategy is proposed. First, the capacity of air-to-ground (A2G) channel by the link preprocess is maximized. Then, the maximum utility function of each UAV is used as the basis of obtaining NE point according to the backhaul channel and the backhaul congestion. Finally, the improved NE strategy is applied in multiple iterations until maximum utility functions of all the UAVs are reached, and the UAVs which are rejected by air-to-air (A2A) link during the process would participate in the source recovery process to construct a multi-hop backhaul network. Simulation results show that average effective backhaul rate, minimum effective backhaul rate increases by 10%, 28.5% respectively in ideal A2G channel, and 11.8%, 42.3% respectively in fading channel, comparing to pure NE strategy. And the average number of iterations is decreased by 5%.

Multiple Unmanned Aerial Vehicle(UAV) Collision Avoidance Scheme Using Flying Ad Hoc Network(FANET) (FANET을 이용한 다중 무인비행체의 충돌회피 방안)

  • Yang, Hyun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.127-132
    • /
    • 2018
  • One of the key issues in the Unmanned Aerial Vehicle (: UAV) technology is the collision avoidance. Specifically, the collision avoidance among multiple UAVs is critical to expand UAV applications to civil sector where large number of UAVs could be operated in the limited space. In this paper, we introduce a collision avoidance scheme based on Flying Ad Hoc Network (: FANET). The proposed scheme adopts collision avoidance mechanism used in wireless data communication networks. Using this scheme UAVs can not only communicate conventional user information, but also share flight information to avoid collision.

UAV Communication System Development by Heterogeneous Mobile Communication System (이종의 이동통신 시스템을 이용한 무인항공기 탑재용 통신시스템 개발)

  • Ko, Kyung-Wan;Park, Pyung-Joo;Lee, Suk-Shin;Lee, Byung-Seub
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.490-502
    • /
    • 2009
  • This monograph details the development of communication UAV(Unmanned Aerial Vehicle) in combined modems of HSDPA with Wibro by using two kinds of mobile network. In order to apply mobile network which is currently serviced to a UAV, it is necessary to solve some problems : insurance of wide coverage based on the range of the UAV, electrical transmission of extensive image data for UAV for watching and scouting, security of stable communication environment is related to network traffic. This paper proposes those difficulties to be solved by application of correspondence system to mobile network. The proposed system consists of two parts; HSDPA part and Wibro part. The use of those can not only secure wide range of coverage but also transmit huge data. Furthermore, through utilizing them along with two kinds of mobile network, stable communication environment can be built up. All of these effects can be confirmed by experimentations and simulations.

  • PDF

Study on UxNB Network Deployment Method toward Mobile IAB

  • Keewon Kim;Jonghyun Kim;Kyungmin Park;Tae-Keun Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.105-114
    • /
    • 2023
  • In this paper, we propose a deployment and operation scheme of UxNB network toward mobile IAB. By operating a UxNB network based on SDN(Software Defined Network), UxNBs are deployed in areas where mobile communication services are desired. After deploying UxNB in the service area, IAB can be set up to perform mobile communication services. For this purpose, this paper first proposes a UxNB Network Controller consisting of a UAV Controller and an SDN Controller, and proposes the necessary functions. Next, we present a scenario in which a UxNB network can be deployed and operated in detail step by step. We also discuss the location of the UxNB network controller, how to deliver control commands from the UAV controller to the UxNB, how to apply IAB for UxNB networks, optimization of UxNB networks, RLF(radio link failure) recovery in UxNB networks, and future research on security in UxNB networks. It is expected that the proposed UxNB Network Controller architecture and UxNB network deployment and operation will enable seamless integration of UxNB networks into Mobile IAB.