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Abstract 
 

The Unmanned Aerial Vehicles (UAV) networks consisting of low-cost UAVs are very 

vulnerable to smart jammers that can choose their jamming policies based on the ongoing 

communication policies accordingly. In this article, we propose a novel cloud and edge-aided 

mobile communication scheme for low-cost UAV network against smart jamming. The 

challenge of this problem is to design a communication scheme that not only meets the 

requirements of defending against smart jamming attack, but also can be deployed on low-cost 

UAV platforms. In addition, related studies neglect the problem of decision-making algorithm 

failure caused by intermittent ground-to-air communication. In this scheme, we use the policy 

network deployed on the cloud and edge servers to generate an emergency policy tables, and 

regularly update the generated policy table to the UAVs to solve the decision-making problem 

when communications are interrupted. In the operation of this communication scheme, UAVs 

need to offload massive computing tasks to the cloud or the edge servers. In order to prevent 

these computing tasks from being offloaded to a single computing resource, we deployed a 

lightweight game algorithm to ensure that the three types of computing resources, namely 

local, edge and cloud, can maximize their effectiveness. The simulation results show that our 

communication scheme has only a small decrease in the SINR of UAVs network in the case of 

momentary communication interruption, and the SINR performance of our algorithm is higher 

than that of the original Q-learning algorithm. 
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1. Introduction 

Low-cost Unmanned Aerial Vehicles (UAV) swarm have broad application prospects in 

military and civilian fields such as agriculture, logistics, reconnaissance, and communication 

relay. Due to the open wireless communication environment, UAVs are vulnerable to spoofing, 

jamming and eavesdropping attacks. Information encryption can effectively defend against 

spoofing attacks. Artificial noise also has an obvious defense effect against eavesdropping 

attacks. However, the implementation cost of jamming attacks is extremely low and can be 

launched without relying on any prior information. This makes jamming attacks the most 

common security threat to UAV networks.  

By applying programmable radio devices such as universal software radio peripherals 

(USRP), smart jammer can observe the ongoing communication states between UAVs and 

then choose the optimal jamming strategies accordingly. Compared with the traditional 

jamming attack, any single mode anti-jamming strategy such as frequency hopping spread 

spectrum (FHSS) or direct sequence spread spectrum (DSSS) can hardly achieve the expected 

anti-jamming effect. Therefore, the communication strategies between UAVs must also be 

smart and programmable. Game theory can well model this kind of decision-making 

confrontation problem. However, the solution of traditional game problems requires 

knowledge of a large amount of information such as UAV and jammer strategies, channel 

models, and revenue models. This information is not only highly confidential, but also 

dynamically changing. In other words, in a highly dynamic environment, the game model 

cannot be solved. 

The essence of the smart anti-jamming problem of UAV networks is how to make 

intelligent decisions. With the development of reinforcement learning, especially deep 

reinforcement learning algorithms, it has brought dawn to the solution of this problem. 

Although the smart anti-jamming technology based on deep reinforcement learning 

algorithms continues to make progress, it can only be applied to high-performance single 

UAV, but not to UAV swarms. This is because UAV swarms are composed of low-cost UAVs, 

and the deployment of these algorithms directly will face three serious difficulties. First, deep 

reinforcement learning algorithms cannot perform the model training process on mobile 

devices. Current deep learning frameworks, such as TensorFlow Lite, can deploy trained deep 

models to mobile devices, but deep models cannot be trained in real time on mobile devices. In 

other words, the parameters of the model cannot be updated as the jamming strategy changes. 

Second, although tabular reinforcement learning algorithms can be deployed on low-cost 

UAV platforms, the state space and action space of the anti-jamming decision problem are 

continuous, which will cause dimensional disaster problems. Simple discretization will make 

it difficult for the tabular models to converge. Finally, there is a solution that seems to be 

feasible. The UAV platform offloads computing tasks to the cloud or the edge, and UAV 

receives the results from cloud computing or edge computing and then makes decisions. The 

problem is that due to the existence of jamming sources, the service quality of the UAV 

network is extremely unstable, and it is easy to appear that computing tasks cannot be 

offloaded or calculation results cannot be received. 

In this work, we propose an A3C teaches Q-learning (A3CTQ) algorithm based on cloud 

computing and edge computing to solve the above problems. The main idea of the algorithm is 

to transfer the intelligence contained in cloud computing power to the UAV platform to help 

UAVs make reasonable decisions when offline. Specifically, the cloud computing center 
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gathers the state data collected by all the UAV platforms, and feeds these data to the A3C 

algorithm for parallel calculation with nearly unlimited computing power to obtain a cloud 

policy network. Similarly, the edge servers collect regional state data and feed these data to the 

DDPG algorithm to obtain the edge policy network. The cloud policy network playing the role 

of expert trains a Q-table and a policy network through an inverse reinforcement learning 

algorithm. The cloud model helps to update models in UAV platforms and edge servers. This 

parameter update is the process in which cloud intelligence flows to the UAV platforms and 

the edge servers. When offline, UAV uses Q-tables updated by the cloud to complete 

decision-making tasks. When the network is connected, the UAV platform will send all the 

state data collected during the offline period to the cloud. As long as the network 

disconnection is not too long, the decision-making ability of the UAV platform will not be 

significantly reduced. 

The main contributions of this paper are summarized as follows: 

• We establish a cloud and edge-aided communication scheme to solve the problem of 

anti-jamming communication of UAV networks to reduce the performance loss caused 

by intermittent network interruptions. 

• We build a game model to solve the computational offloading problem of UAV 

networks facing intermittent disconnection of communication link. 

• We design an A3CTQ algorithm that transfers cloud intelligence to the UAV platform 

to solve the problem of continuous anti-jamming control of UAV networks with 

intermittent communication link interruption. 

The rest of this paper is organized as follows. We review related work in Section 2 and 

present the system model in Section 3. We propose a cloud and edge-aided UAV network 

communication scheme and introduce the details of the A3CTQ algorithm in Section 4. We 

build a game model to implement decentralized control of computational offloading in Section 

5. We provide simulation results in Section 6 and conclude this work in Section 7. 

2. Related Work 

Smart jamming attack which has the ability of strategy learning makes the anti-jamming effect 

of relying only on the physical layer technology very unsatisfactory. The problem of smart 

jamming was first proposed in [1], and game theory proved to be a powerful theory to solve 

the problem of smart jamming. The authors in [2] transferred this problem of using game 

theory to model anti-smart jamming to the field of cognitive radio for the first time. Since then, 

almost all the anti-smart jamming related researches are based on game theory to establish the 

decision models.  

Early studies were based on the perfect observation assumptions, and some excellent works 

[3-6] based on the imperfect observation assumptions to study anti-jamming problems 

appeared after that. For example, with considersing the situation where users do not know the 

type of the jammers, a Bayesian game was used to model the anti-jamming problem[3, 4]. A 

Bayesian Stackelberg game was used to model the interactions between user and smart 

jammer[5]. The authors in [6] has formulated the jamming game with imperfect information, 

i.e., the jammer’s bounded rationality and inaccurate observation of the user’s action.  

The incomplete information game makes the modeling of this problem more realistic, but 

the solution of the model also encounters the problem of incomplete information. Most of the 

work introduced before is solved by planning theory and optimization theory. But a lot of 
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information needed to solve the problem is difficult to obtain, such as channel gain, the 

position of the jammer, maneuvering mode and jamming power allocation strategy.  

Reinforcement learning algorithms, especially model-free reinforcement learning 

algorithms, have brought dawn to the solution of the this tough problem. The model-free 

reinforcement learning algorithm continuously collects the interactive data generated by 

interacting with the environment, and learns anti-interference strategies from these data. 

Therefore, the algorithm does not require any prior knowledge. In [7], the authors were the 

first to use Q-learning algorithm to solve the smart jamming problem in cognitive radio 

network. The problem of multi-agent anti-intelligence interference decision-making has 

gradually become the focus of researchers. In [8], the authors used a multi-agent Q-learning 

algorithm called femto-based distributed and sub-carrier-based distributed power controls 

using Q-learning (FBDPC-Q) to deal with the aggregate macrocell and femtocell capacities. 

Considering the impact of the channel estimation error, a Q-learning based power control 

algorithm using non-cooperative game theory was proposed to suppress the joint smart 

jamming attack[9]. In [10], the authors used UAVs to relay the messages and improve the 

communication performance of VANETs with a Q-learning based scheme. The application 

areas of Q-learning algorithms continue to expand. In [11], the authors solve the anti-jamming 

problem of UAV radar network based on the double greedy Q-learning algorithm. The 

Q-learning algorithm associated with an onedevice federated jamming detection mechanism 

[12] played an important role in the defense against smart jamming attack in FANET. 

However, the shortcomings of the table-driven Q-learning algorithm have gradually 

emerged. In the multi-agent system anti-intelligence interference problem, the state space of 

the problem to be solved is very large. Consider a typical communication system composed of 

multiple UAVs, where each UAV’s receiver has multiple channels and the UAVs can perform 

autonomous maneuvering. The high dimensionality of the state space of the system can easily 

cause dimensional disasters, making the Q-learning algorithm unable to work. The 

combination of deep learning technology and reinforcement learning technology can perfectly 

solve this problem. The authors in [13] proposed a hotbooting deep Q-network based 2-D 

mobile communication scheme to address the smart jamming problem. The algorithm is 

deployed in a robot that can move on the ground, not in a UAV platform. In [14], a deep 

Q-learning-based UAV power allocation strategy combines Q-learning and deep learning was 

proposed, but this research only studied the scenario of one UAV rather than UAV network. 

The authors in [15] extended the DQN algorithm to the scenario of incomplete information 

game, and proposed a deep recurrent Q-networks (DRQN) in the three-dimension space to 

obtain the optimal anti-jamming strategy with incomplete channel state information(CSI). 

It is worth noting that the research on anti-smart jamming is mainly concentrated in wireless 

networks, and there is almost no related research on UAV networks, except for UAV-aided 

networks. In [16], the authors systematically reviewed the applications and challenges of 

UAV-aided networks. In [17], the authors focused on the anti-jamming techniques in 

VANETs and proposed a hotbooting policy hill climbing (PHC)-based strategy to deal with 

this kind of jamming. Beak et al. [18] developed a future UAV-aided tactical data link to 

improve the reliability of military communication. Further more, Xiao et al. [10] combined the 

PHC frame and Q-learning algorithm to solve the problem of smart jamming in UAV-aided 

VANETs without knowing the VANET model and jamming model. The advantages of deep 

learning are also reflected in UAV-aided networks, on the basis of previous studies, in [19] the 

authors combined the reinforcement learning algorithm with deep learning techniques to 

address the issue of dimensional curses. 
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Later researchers have made continuous progress in theoretical research on anti-smart 

jamming attacks, but they have not considered enough on how to deploy related algorithms, 

especially deploted on low cost UAV swarm. We know that low-cost UAV platforms are 

energy-constrained and cannot deploy deep reinforcement learning algorithms. Zhou et al. [20] 

proposed a mobile edge computing (MEC) system to support the deployment of decision 

algorithm. However, the problem of deep reinforcement learning algorithm failure caused by 

intermittent communication interruption has not been paid attention to by researchers. 

By reviewing the above works, we draw the following conclusions. The game theory model 

is very suitable for solving the problem of resource optimization in wireless communication in 

a decentralized scenario. However, the overly complicated calculation method of the reward 

function makes the previous game models cannot directly applicable to low-cost drone 

platforms. The lightweight computing offloading algorithm is more suitable for UAV swarms. 

At present, there is almost no related work on smart anti-jamming of UAV swarms, especially 

when network communication is intermittent.  

3. System model 

The functional flow diagram of the proposed A3CTQ communication scheme consists of five 

parts. The first part is data collection. Each UAV collects information such as channel gain, 

signal to inference plus noise (SINR) value of each receiver, location of jamming sources from 

the environment or smart jammers. The second part is computing task dispatch. A game theory 

algorithm is running to dispatch the current computing task to the cloud, the edge servers of 

local. The third part is decision-making. The cloud strategy is calculated by the A3C algorithm, 

the edge strategy is calculated by DDPG algorithm and the local strategy is calculated by 

Q-learning algorithm. And the priority of the strategy decreases sequentially, that is, the cloud 

strategy has the highest priority and the local strategy has the lowest priority. The fourth part is 

implementation. The UAV starts a timer after dispatching the calculation task. When the timer 

expires, the strategy with the highest priority received is selected as the UAV strategy and 

implemented. The fifth and the final part is update. We use the cloud A3C algorithm as an 

expert strategy, and use reverse reinforcement learning algorithms to guide offline training of 

DDPG and Q-learning algorithms to continuously improve offline decision-making 

capabilities. 

 

 

Fig. 1.  The function description diagram of A3CTQ scheme 
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3.1. Communication model 

As shown in Fig. 2, the communication model consists of three parts. The first part is UAV 

network, and its network topology is hierarchical mesh network. The backbone mesh network 

consists of backbone UAVs. The backbone UAVs have strong communication capabilities 

and a long distance for sending and receiving information. Each backbone UAV establishes a 

homeland area around it, and there are several small and low-cost mission UAVs in the area. 

Cross-domain communication of mission UAVs requires relay services from backbone UAVs. 

GPS is responsible for providing timing and positioning services for UAVs. Jamming UAVs 

can approach backbone UAVs and mission UAVs and launch smart jamming attack based on 

cognitive radio technology.  

The second part is the ground station network. The ground stations maneuver within the 

communication range of the backbone UAV, and use data link technology to maintain 

communication with the backbone UAV. Ground stations maintain communication through 

microwave relays. Since the ground station is far from the mission area, it is assumed that the 

communication link between the ground stations cannot be jammed. The working area of 

mission UAVs is supported by base stations.  

The third part is the cloud computing center. The UAV network communicates with the 

cloud computing center through the base station with 4G or 5G cellular communication 

technology. The base station is connected to the cloud computing center through an optical 

fiber link. The base station is in an urban environment with a complex electromagnetic 

environment, and it is difficult to effectively control jamming sources in the city. Therefore, it 

is assumed that the air interface links between the base stations and the UAVs will be 

interfered with and intermittently interrupted. The links between the base stations are 

fiber-optic and are not subject to interference. 

 

Fig. 2.  Topology of UAV network under the support of cloud computing center and edge servers 

3.2 Computation model 

The computing model studied in this paper includes three types of computing resources, 

namely local computing resources on UAVs, edge computing resources on ground stations, 

and cloud computing resources connected to remote cloud computing center. For the first, 

local computing power is provided by embedded chips on UAVs, such as the ARM Cortex 

A72 processor for the Raspberry Pi. This computing power has almost no delay, but due to the  
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limitations of the UAV platform, high-intensity calculations cannot be performed. The second 

type of computing power is the computing power on the ground station. The on-board 

platform can provide strong GPU computing power, and it is directly connected to the UAV 

through the data link, and the delay is small. The third kind of computing power is the remote 

cloud computing center. The cloud computing center can provide almost unlimited computing 

power. However, the air interface link between the UAV and the cloud computing center can 

be easily jammed. The ground link to the cloud computing center needs to be forwarded 

through multi-hop routing, and the transmission jitter and delay of the data packets are large. 

The features of the three computing resources are shown in the Table 1. 

Table 1. Features of three computing resource 

Computing Resources Advantages Disadvantages 

Local UAV No latency 
Poor computing ability;High 

energy consumption 

Ground Station 

as Edge Server 

Saving the energy of UAV; 

Low latency; 

Strong computing ability; 

Node location can be 

redeployed 

Computing power be 

overloaded 

 

Remote Cloud Computing 

Center 

Saving the energy of UAV; 

Extremely strong computing 

ability; 

High latency; 

High jitter; 

Access points are fixed and 

vulnerable 

 

The data transmitted from the UAV platform to the ground station and the cloud computing 

center are real-time environmental state data collected by the UAV sensors. The ground 

station and cloud computing center receive the state data and feed the data to the A3CTQ 

distributed deep reinforcement learning algorithm established in Section 4 for intensive 

calculations. The calculation results are sent back to the UAV platform.  

The computing tasks generated by the UAV i  are modeled as 

tuples  , , ,
Local Edge Cloud

i i i state parC C C D D， . Different algorithms are used to execute the same 

computing task i  on different computing platforms. The three notations , ,
Local Edge Cloud

i i iC C C  

indicate the number of CPU cycles required for the task i  at the local, edge, and cloud 

computing center. Since the format of the state data to be sent by each UAV is strictly 

specified, the size of the data is expressed by a constant stateD . The state data includes the 

measurement time, the current position of the UAV, the current speed of the UAV, the 

transmission power of each channel, and the Signal to Interference plus Noise Ratio (SINR) of 

each channel. After receiving the state data, the cloud computing center and edge servers run 

the A3CTQ algorithm to get the updated model parameters. The model parameters include two 

parts: the parameters for the Q-table of Q-learning algorithm deployed in the UAV platform 

and the parameters for the edge policy network. Therefore, the size of the model parameters 

parD  is also a constant. Compared with resource-constrained UAV platforms, the computing 

resources and power resources of ground stations and cloud computing centers are sufficient, 

so the calculation cost after data unloading is ignored, and the energy consumption cost of data 

transmission to the UAV platform is negligible. 
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3.2.1 Local Execution 

The time required to calculate locally on the UAV platform is in [20]. 

 

   /
Local Local

Local iT C F ,                                                              (1) 

 

where Local
F  is the CPU frequency of the local UAV platform. Because computing tasks are 

offloaded locally, there is no data transfer delay.The energy consumption of the computing 

task i  being offloaded to the local is 

 

          
Local Local

Local iE C e ,                                                       (2) 

 

where Local
e  is the energy consumed by each CPU frequency of the UAV platform. The local 

calculation does not consider the energy consumption of data transmission. 

3.2.2 Offloading to Edge 

The time required to calculate on edge server is [20]. 

 

    1 / /Edge Edge Edge

Edge i state par EdgeT C Q F D D R    ,                         (3) 

 

where Edge
F  is the CPU frequency of the edge platform. /

Edge Edge

iC F is the edge computing 

time of the task i . 
Edge

Q  is the length of the cache queue for unfinished tasks sent by other 

UAVs. Edge
R  is data transfer rate from UAV platform to edge. The total time to receive and 

send data is   /state par EdgeD D R .The energy consumption of the computing task i  being 

offloaded to the edge is 

 

 
Edge

Edge stateE D e ,                                                   (4) 

 

where Edge
e  is the energy consumption of UAV sending each unit of data to the edge. We 

ignore the energy consumption of receiving data. 

3.2.3 Offloading to Cloud 

Similar to the case of offloading to the edge, the time required to calculate on cloud is 

 

    1+ / /Cloud Cloud Cloud

Cloud i state par CloudT C Q F D D R   ,               (5) 

 

The energy consumption of the computing task i  being offloaded to the edge is 

 

 
Cloud

Cloud stateE D e .                                                 (6) 

 

Due to the limitation of the power resources of the UAV platform, when the power of the UAV 

is insufficient, the UAV needs to return to the base, and another UAV will take over the UAV 
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to continue the task. When the number of UAV in a swarm is large, it can be approximated that 

the occurrence of UAV mission succession events is uniform, so that the cost of energy 

consumption has a linear correlation with the cost of time consumption. From the analysis, we 

can establish the following payment function: 

 

cost
Z T E   ,                                                             (7) 

 

where the weight parameters  ，  are used to adjust the ratio of calculation cost and energy 

consumption cost. 

3.3 Channel and jamming model 

According to [10], the channel model of air-to-air and ground-to-air links for UAVs can be 

modeled as a log-normal shadowing model with constant channel power gains. The path loss 

denoted by PL  can be modeled by 

 

     0

0

dB dB 10 lg ,
d

PL d d
d

 
 

   
 

,                                 (8) 

 

where v  is antenna gain constant, and 0
d  is the reference distance, and   is the pass loss 

exponent at reference distance. 

It can be seen from the communication model in Fig. 1 that the jammer can interfere with 

three kinds of links, one is the link between the UAVs, one is the link from the UAV to the 

ground station, and one is UAV-to-tower link. Among them, the first link is an air-to-air link, 

and the latter two are air-to-ground links. Among them, the air-to-air link belongs to free space 

propagation, and we take its path loss exponent as 2, and the ground-to-air link is affected by 

multipath effect, and we take its path loss exponent as 4.  

3.4 Utility model 

The utility model comprehensively considers the two factors of communication quality and 

data offloading quality. This model is the final evaluation model in this paper. The network 

utility has a positive correlation with the expected SINR of each channel of the UAV platform. 

However, we believe that the network utility and the offloading cost cos t
Z  in Eq. (7) are not 

simply negative correlations.  

cos t
Z  can effectively prevent computing tasks from being offloaded to a single computing 

node. However, it is impossible to describe the effect of offloading on improving the 

anti-jamming decision. Therefore, we define a delay sensitivity function  .latencyf  to 

characterize this relationship. This function is defined by 

 

  

1

1

1 2 1 2

2 1

2

1

, ,

0

latency

t t

t t
f t t t t t t

t t

t t

 



  


 

,                                        (9) 
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where 1 2
,t t are two time-value thresholds. Specifically, 1

t  is called a health threshold. If the 

UAV can receive the calculation result from the cloud or the edge within 1
t  time, there is no 

value loss. Specifically, after UAV offloads computing tasks to the cloud or edge server, it 

starts to run local decision-making algorithms. We assume that the expected time required for 

the local decision algorithm is 1t . Then, when the time for receiving the returned remote 

calculation result is less than 1t , no additional time delay will be generated, and therefore, no 

additional time delay will be generated by the calculation offloading. 2
t  is called the failure 

threshold. If the UAV has not received the calculation results until time 2
t , it is considered that 

this offloading has no value. We know that smart jamming attacks can periodically change the 

attack strategy. We assume that the average time for smart jamming strategy update is t2. If the 

time required for offloading is greater than t2, it is meaningless when the remote calculation 

result is returned to the UAV. If the receiving time is between the two, the benefit is 

considered to be linearly discounted. The value-optimized network utility model is given by 

 

   1 2 cos/ , ,latency cost tUtility SINR f Z t t Z .                                    (10) 

 

When the number of UAVs in the network is not too large, energy cost cannot be simply 

considered to be proportional to time cost, so it cannot be approximated by parameter  . In 

this case, the network utility function is modeled as 

 

   1 2
max sgn ,0 , ,UAV

k latency battery threshold
Utility f T T E e t t SINR                    (11) 

 

where therosholde  is threshold level that requires battery replacement, and E  is the remaining 

power of UAV.  

 

 

Fig. 3.  Cloud and edge-aided UAVs network communication scheme 
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4. Cloud and edge-aided UAV network communication scheme 

As shown in Fig. 3, there are three types of communication entities in the communication 

scheme, namely UAV platform, edge server and cloud computing center, in which the UAV 

platform is responsible for environment perception, and the edge servers and cloud computing 

center are responsible for computing power support. In other words, the UAV platform is the 

source of environmental awareness, and the cloud computing center is the upper limit of 

computing power. The capabilities of these two entities are completely asymmetric, and the 

edge servers play a balancing role between them. 

 

Fig. 4.  Schematic diagram of the data flow of the A3CTQ algorithm deployed at the edge 

 

The edge has a compromised computing power and a compromised state data collection 

capability. The contribution of the edge to the intelligent decision of the system comes from 

the decentralized deployment of its spatial location. As the source of environmental awareness 

and the end point of action capabilities, the UAV platform's contribution to system intelligence 

is reflected in distributed parallel discovery and fast execution. The cloud computing center 

relies on its powerful computing power to extract action strategies from state data. The cloud 

computing center plays the role of a factory that processes the input state data into intelligent 

model parameters. 

Based on the above analysis, we have designed an architecture that transmits perception 

from the UAV platform to the ground through computational offloading, and the intelligence 

processed by cloud computing is transmitted to the air as model parameters.  

Specifically, we designed a distributed A3C teach Q-learning algorithm (A3CTQ). The 

A3C algorithm is deployed and run in the cloud computing center, and A3C's strategic 

network is used as an expert. The reverse reinforcement learning algorithm is used to imitate 

A3C's decision-making ability. A Q-learning form is trained and deployed to the UAV. At the 

same time, a DDPG algorithm's Actor strategy network is trained by the reverse reinforcement 
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learning algorithm and updated to the edge server. When the UAV is intermittently 

disconnected, the UAV is assisted by the Q-learning algorithm on the platform. 

The algorithm running on the UAV platform is shown in Table 2. The algorithm first 

initializes the relevant parameters of the Q-learning algorithm, and then runs the calculation 

power offloading algorithm described in Section 5.3 to determine where the calculation tasks 

should be offloaded. If local computing power is selected, the drone platform runs the standard 

q-learning prediction algorithm and updates the Q-table, then reads the sensor's SINR data, 

calculates the network utility, and forms an experience to send to the cloud computing center 

and edge. If the cloud or edge computing power is selected, the UAV platform starts a timer, 

and the cloud and the edge simultaneously calculate the best action strategy at the fastest speed 

and send it to the UAV platform, and then process the received experience data. 

 

Table 2. Cloud-assisted Q-learning algorithm deployed in UAVs 

 

 

 

 

 

 

Algorithm 1: Cloud-Assisted Q-learning Algorithm 

Input: jamming power vector  k
y  ,  k

SINR  calculated by receiver UAV, reward vector  k
u  

and  k
x  generated by policy models in edge servers or cloud computing center 

Output: Q-table deployed in UAV platform 
1 Initialize 

 1
, , ,   s . 

2    , 0, 0, ,Q V  s x s s x . 

3 For 1, 2,3,k   

4     Choose a certain Computing Entity to offloading from UAV, edge or Cloud by gaming 

algorithm: 

5         Case offloading to UAV Local: 

6             Choose  k
x with   

7             Transmit signals with power  k
x ; 

8             Observe 
   

,
k k

y SINR and  k
u ; 

9 
            Update 

    ,
k k

Q s x  and 
  k

V s ; 

10             
   1k k

s y  

11         End case 

12         Case offloading to Edge: 

13             Transmit 
   

,
k k

y SINR and  k
u  to Edge 

14             Receive  k
x  from Edge 

15         End case 

16         Case offloading to Cloud: 

17             Transmit 
   

,
k k

y SINR and  k
u  to Cloud 

18             Receive  k
x  from Cloud 

19         End case 

20 
    Update 

    ,
k k

Q s x  and 
  k

V s  of UAV from Cloud 

21 End for 
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Table 3. Cloud-assisted deep deterministic policy 

gradient algorithm deployed in edge servers 

Algorithm 2: Cloud-Assisted Deep Deterministic Policy 

Gradient Algorithm 

1 Randomly initialize critic network  , | QQ s x  and 

actor  |  s  in every Edge Data Center in Ground 

Station with weights 
Q  and 

  spontaneously. 

2 Initialize target network Q  and   with weights 

,Q Q     
 
   in each Edge Data Center 

3 Initialize replay buffer D  

4 For episode = 1, ,M  do 

5 
    Initialize a UO stochastic process N  for action 

exploration 
6 

    Receive initial observation state 
 1

s  

7     For 1, ,k T  do 

8 
        Select action 

      
|

k k k  x s N  according to 

the current policy and exploration noise 

9 
        Execute action 

 k
x  and observe reward 

 k
u  and 

observe new state 
 1k

s  

10 
        

        1
, , ,

k k k k
u


 s x sD D  

11 
        Set 

       1 1
, | |

i i i Q

iy u Q    
      s s  

12         Send , iyD  to Cloud Data Center 

13         Update critic by minimizing the 

loss:      
21

, |
i i Q

i

i

L y Q
N

  s x  

14         Send the parameters of actor network  |  s  to 

Edge Data Center 

15         Receive the comparison results between the actor 

network of Edge  | u s  and of Cloud  | cloud

cloud

 s  

16         If    cloudJ J   

17 
            cloud    

18         End if  

19         Update the actor policy using the sampled policy 

gradient: 
20             

          
,

1
, | | | |u ii i

Q

i

J Q
N





 
  

 
    x ss s x x

s x s  

21         Update the target networks: 

22              1Q Q Q   
 
    

23              1     
 
    

24     End for 

25 End for 

 

 

 

Table 4. Deep inversed RL imitating A3C algorithm 

deployed in cloud computing center. 

Algorithm 3: Deep Inversed Reinforcement Learning Imitating 

A3C Algorithm at thread level 

1 //Assume global shared parameter vectors  , 
 and global 

shared counter 0T   

2 //Assume thread-specific parameter vectors    and    

3 //Each thread in A3C algorithm corresponds to one UAV 

4 Initialize trajectory 
i
  of this thread i  which corresponds to 

UAV i  

5 Initialize thread step counter 1t   

6 Repeat 

7     Reset gradients: 0d   and 0vd   

8     Synchronize thread-specific parameters     and 

     

9     startt t  

10     Get state ts  

11     Repeat 

12         Perform ta  according to policy  | ;t ta s    

13         Receive reward tr  and new state 1ts   

14         Store  1, , , st t t ts a r   to thread trajectory i  

15         1t t   

16         1T T   

17     Until terminal ts  or maxstartt t t   
18 

    
 

0 for terminal 

; for non-terminal 

t

t t

s
R

V s s


 


 

19     For  1, , starti t t   do 

20         iR r R   

21         Accumulate gradient w.r.t 

    : d d log | ; ;i i ia s R V s      
     

22 
        Accumulate gradient w.r.t   d ;iR V s          

23     End for 

24     Perform asynchronous update of   using d  and of   

using d   

25 Until maxT T  

26 Send i  to global network of A3C in Cloud Data Center and 

Initialize global trajectory pool 
global  

27 Receive trajectory 
edge  from Edge Data Center 

28 

Merge all the i  and 
edge , global i edge

i

  
 

  
 

 

29 Take 
global  as expert experiences, and use Inverse 

Reinforcement Learning algorithm to output an reward function 

 .globalR  and an actor network     

30 Using  .globalR  to generate Q-table and transmit it to UAV to 

update 

31 Clone the whole group of network in Edge Data Center and train 

them using  .globalR  and     to generate an actor network 

and send it from Cloud to Edge to update the actor network there 
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The algorithms deployed at the edges are shown in Table 3. The prototype of the 

algorithm is a DDPG algorithm for processing continuous action space decision problems. 

The algorithm consists of two parts, the actor part and the critic part. Each part contains two 

deep neural networks. The two neural networks in the critic part are target network 'Q and 

critic network Q . The two neural networks in the actor part are target network 'u and actor 

network u . The input of the target network 'Q  is the next state  1k
s

  and target action ' . Its 

output is target state value 'Q . The input of the critic network Q  is current state  k
s  and 

action  , and its output is state value Q . The TD error can be calculated by Q  and 'Q , which 

is the key value to update the model parameters. The actor part is also composed of two deep 

neural networks. The input of target network 'u  is the next state  1k
s

  and its output is target 

action '  which is a input of target network 'Q . The input of actor network u is state  k
s  and 

its output is action  which is a input of critic network Q . The parameters of the actor 

network have two update paths, one is to update the parameters through the back propagation 

of TD error, and the other is to copy the parameters of the policy network trained by the 

reverse reinforcement learning algorithm in the cloud. Fig. 4 clearly illustrates this process. 

The A3C algorithm deployed in the cloud is shown in Table 4. Compared with the DDPG 

algorithm deployed on the edge, the A3C algorithm deployed in the cloud has three main 

advantages, namely asynchronous training framework, network structure optimization, and 

critic evaluation point optimization. The asynchronous training framework is the biggest 

optimization.  

The cloud network consists of a shared network and n asynchronous networks. The shared 

network is called Global Network and is responsible for the aggregation of calculation results. 

Each of the n asynchronous networks corresponds to a thread, and each thread is called a 

worker. Each thread has the same network structure as the public neural network. Each thread 

independently interacts with the environment to obtain empirical data. These threads interact 

with each other. 

The cloud can get the state information of the entire network. The cloud can get the status 

information of the entire network. The n workers of the A3C algorithm correspond to one 

UAV. With the help of the A3C algorithm, the state information of the entire network is 

effectively used, and the training process can be performed in parallel. After each thread has 

accumulated enough UAV experience data, it calculates the gradient of the neural network 

loss function in its own thread, but these gradients do not update the neural network in its own 

thread, but instead update the global neural network. In other words, the n threads will 

independently update the neural network model parameters of the common part using the 

accumulated gradients. Every once in a while, the thread updates the parameters of its own 

neural network to the parameters of the global neural network. The parameters of the public 

network store the intelligence that can guide the UAV to make anti-jamming decisions. When 

the global network converges, the global network will be used as an expert, that is, as a reward 

function of the reverse reinforcement learning algorithm, to assist the UAV and the edge to 

improve intelligence. With this reward function, the cloud can easily make Q-table of 

Q-learning and policy network of DDPG converge. The detailed algorithm process is shown in 

the Table 4. 

5. Distributed computation offloading strategy 

Because the network is intermittent, it is difficult to implement a centralized offloading 

strategy. Therefore, we use game theory to establish a decentralized control calculation 



4696                                   Li et al.: Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Networ  

 

offloading strategy. In Section 3.2, we established a linear cost model of time consumption 

and energy consumption. In the modeling process, we ignored the secondary factors such as 

receiving energy consumption and retransmission, in order to build a lightweight model. This 

is because the calculation offloading decision requires additional calculations, and if you 

deploy a computationally intensive model, you will lose more than you gain. 

 

Table 5. Cloud and edge-assisted UAV network computing offloading algorithm 

 

In Eq. (3) and Eq. (5), we use 
Edge

Q  and 
Cloud

Q  to describe the phenomenon of centralized 

offloading. In order to effectively avoid the phenomenon of centralized offloading, we 

establish a game model  , ,N A G , where N  denotes the number of UAVs, A  denotes the 

set of offloading policies, and G  denotes the cost function which was built in Eq. (7). For the 

convenience of model analysis, we introduce more notations. ju

i
a  denotes the offloading 

policy of UAV ju . 

We define   ; 0 : ,1: ,2 :ju

iA s i Local Edge Cloud   . ju  denotes all UAVs except ju , and 

i
a
  denotes the offloading policy of ju .  ,j ju u

i i
G a a

  denotes the cost function of UAV ju , 

which is given by 

  
, 0

, , 1

, 2

j

j j j

j

u

Local Local i

u u u

i i Edge Edge i

u

Cloud Edge i

T E if s

G a a T E if s

T E if s

 

 

 



  


  


 

.                                         (12) 

 

Algorithm 4: Computing Offloading 

Input: positions of UAVs, delay and SINR of data link to edge servers and cloud computing center, task deque lengths of 

UAV, edge servers and cloud computing center 

Output: tasks offloading strategy (local, edge servers or cloud) 

1 Initialization 

2 Each UAV starts a Timer and select its first strategy 0
i

a   

3 Compute the initial value of cost function Z  

4 End initialization 

5 For each uav n  

6     Do: 

7         If (timer>t1) 0
i

a   and stop sending request to Edge or Cloud 

8         If (timer>t2) choose 0
i

a   as final choose and break the loop 

9         Request the number of tasks in both buffer of Edge and Cloud 
10         Select the cost of new strategy ' 1 2

i
a or  

11         Compute the cost of new strategy as 'Z  

12             If  'Z Z  then 'Z Z  

13             Else try the last strategy 

14         Send a request to update 
15         If (request accepted) then compute  .f  according to the timer and update strategy i

a  

16         Else choose 0
i

a   as final choose 

17     Until an Equilibrium is achieved 

18 End for 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020                        4697 
 

 

We use the potential game theory to discuss the convergence of this game model. According 

to the potential game theory, if we can construct a potential function for the cost function, the 

game model must converge to the Nash equilibrium point. We denote the cost function of 

UAV n  as n
u , which can be given by 

  , m

n n n

m

s
u a a

c
  ,                                                          (13) 

where m  is equal to 0,1,2, which means local, edge, or cloud respectively, and m
s  is the 

expected cost of a certain UAV chosen to offload to m for calculation, and m
c  c is the number 

of UAVs that make the same offloading strategy in the same time except itself.  

Lemma: The game model  : max , ,n n n uG u a a n N    is a strict potential game, and there is 

a purely strategic Nash equilibrium. 

Proof: To prove that the game model is a strict potential game, we construct a potential 

function 

    
1 1

,
mcM

n n m

m l

a a l 


 

 ,                                                    (14) 

where   m

m

s
l

l
 . If any UAV n  changes its offloading strategy from n

a  to '
n

a  

independently while other UAVs don't change their offloading strategy, the change amount of 

the cost function is 

 

        ' '
', , 1

n n n nn n n n n n a a a a
u a a u a a c c 

 
    .                          (15) 

 

Accordingly, the amount of change in its potential function is 

 

 

   

       

   

' '
1 1

' '

1 1 1 1

' '

', ,

1

a a a an n n n

n n n n

n n n n

n n n n

c c c c

a a a a

l l l l

a a a a

a a a a

l l l l

c c

 

   

 

 

 

   



   
         
   

  

    ,                (16) 

 

therefore, we have 

        ', , ', ,n n n n n n n n n nu a a u a a a a a a      .                     (17) 

 

Eq. (17) satisfies the definition of strict potential game. It can be seen that the proposed 

offloading game model for UAVs is a strict potential game and has at least a pure strategy 

Nash equilibrium. Finally, the expression of the potential function is given by 

 

  

 

 

 

arg min , 0

arg min , 1

arg min , 2

i j

i j

i j

Local Local i
a A

i Edge Edge i
a A

Cloud Cloud i
a A

T E if s

a T E if s

T E if s

 

  

 









 




  

  


 .                             (18) 
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The successful construction of the potential function ensures that the game process must 

converge after a finite number of iterations. As shown in Table 5, we designed a simple 

polling algorithm to converge the Nash equilibrium point with less computational overhead. 

Each UAV in the network is initialized asynchronously, using local computing as the default 

strategy, and starting a timer. If time 1
t  is reached, the UAV stops sending requests to Edge or 

Cloud, but still keeps listening. If time 2
t  is reached, the UAV stops listening and immediately 

offloads the calculation to the local. If the timer does not exceed the time limit 1
t , the UAV 

sends an offload request to Edge and Cloud, and listens to the number of queued tasks sent 

back by the edge. Based on the data, UAV calculates the value of the cost function of the three 

offloading strategies, and changes the current strategy to the best. At the same time, the Edge 

and Cloud sides also add the new requests to the queue. This process is repeated until the timer 

expires or the best offloading strategy doesn’t change for a while, that is, the Nash equilibrium 

is reached. 

6. Simulation results 

We have performed simulation experiments on UAV clusters to verify the performance of the 

proposed intelligent anti-jamming algorithm. We follow the interface specification of the 

environment class used by openai gym, and use python and pygame to write a simulated UAV 

swarm’s flight environment. The rendering effect of the simulation program is shown in Fig. 5.             

The software environment for our simulation experiments is python3.7 +pygame1.8 

+pytorch1.4 +cuda10 +cudadnn7 +Gym0.15. We use GPU 2080Ti as a simulation computing 

power resource. We use multi-process techniques to simulate the concurrent execution of the 

A3C algorithm. We use delayed batch updates to represent the delay of edge computing and 

cloud computing. Specifically, the latest batch data obtained by edge computing is delayed by 

3 time slots before updating the Q-table on UAV. The latest batch data obtained by cloud 

computing is dalayed by 15 time slots before updating the Q-table on UAV, and delayed by 5 

time slots before updating the buffer of DDPG policy networks on the ground stations. 

 

   
 

 

 

 

Fig. 5.  The rendering effect of the simulation 

program 
  

 

Fig. 6.  The utility of UAV network in 4 

scenarios 
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The neural network consists of several fully connected layers and Relu layers. Specifically, 

the DDPG network is composed of 4 fully connected layers, and the number of neurons in 

each layer is 256. The A3C network consists of 16 fully connected layers, with 512 neurons 

per layer. The state space of the reinforcement learning algorithm is represented by a 

2-dimensional matrix. Each row of the matrix corresponds to the state of each UAV in the 

UAV network. The state of each UAV is composed of two parts: channel state and position 

state. The channel state is a one-dimensional vector, and the dimension is equal to the number 

of channels of UAV. The value of the channel state vector represents the transmission power 

allocated by the UAV to each channel. The position status is the position coordinates of the 

UAV provided by GPS. The normalized channel state and the normalized position state are 

concatenate into one UAV state vector.  

Similarly, the action space is also represented by a 2-dimensional matrix. Each row vector 

represents the action vector of a UAV. Each row vector is also composed of two parts: the 

channel vector and the position vector, which respectively represent the target channel power 

distribution and the target flight position. The actual power allocation strategy of the UAV in 

the next time slot is the weighted average of the target power distribution and the original 

power distribution. The velocity of UAV is 0.1m/time slot, and the direction of velocity is the 

difference between the target position vector and the original position vector. The position of 

UAV is updated every time slot. 

The simulation parameters are chosen similar to [13]. The flying area of the UAVs is 4km * 

3km, and the flying height is 150m ~ 500m. There are 3 ground stations with a service radius 

of 500m. The radio transmission power of the UAV TP  and jammer JP  are both 0.4W. The 

radio propagation model is given by equation (8), and we use the same parameters as [13] with 

the specific values 0.075  , 0 10d   and 2
free space




  . The initial position coordinates and 

directions of velocities of all the UAVs and jamming UAVs are initialized with random values. 

The position of the ground station is also initialized by a random value. The mobility model of 

the jammer is a random waypoint model. The number of jammer UAVs JN   is 5. The jamming 

strategy is frequency hopping jamming. The set of frequency hopping points is updated every 

150 time slots according to the statistical rule of the detected signal.  

We use communication session loss probability lost
p   to simulate a communication 

disconnection. When the communication session is lost, we roll back the Q-table value on the 

UAV platform to the value 10 time slots ago. When the average utility value of UAV network 

U   0,0.5 , 0.3
lost

p   ;when  0,5,1.0U   , 0.2
lost

p  ; when  1.0,1.5U   , 0.1
lost

p   . 

In addition to utility, we use Signal to Interference plus Noise Ratio (SINR) as an important 

indicator to measure communication quality. In the mesh network, each UAV node only 

 
Fig. 8.  The average SINR (db) of UAV network 

 

Fig. 7.  The average utility of UAV network 
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communicates with neighbor nodes. We define the SINR of a UAV as the SINR of the receiver 

of its closest neighbor UAV node. The signal power is the nearest neighbor transmitter power 

sendP  (dbm) plus the transmit antenna gain 5 (dbi) minus the propagation loss calculated by 

equition (8) (db). The interference power 
jammerP (dbm) is the power of all jammers plus the 

antenna gain 5 (dbi), minus the propagation loss (db). Gaussian noise gain value is 5 (db). 

We simulated the anti-jamming strategy of the UAV network in four scenarios. In Scenario 

1, the Q-learning algorithm is deployed on the UAV platform and the communication session 

loss mechanism is activated. In scenario 2, the UAV platform deploys the DDPG algorithm, 

and the communication session loss mechanism is not activated. In scenario 3, the A3C 

algorithm is deployed on the UAV platform, and the communication session loss mechanism 

is not activated. In scenario 4, the UAV platform deploys the Q-learning algorithm, the edge 

servers deploy the DDPG algorithm, the cloud computing center deploys the A3C algorithm, 

and the communication session loss mechanism is activated. We performed 300 time slots 

simulations for each algorithm and each time slot samples and learns from the buffer 100 times 

on a computer with 3.6GHz Intel Core i9-9900, 2080Ti GPU and 48GB of RAM. The initial 

parameters of each model are the values obtained after 48 hours training between single UAV 

and single jamming UAV. During the simulation, the jammer randomly changed the jamming 

strategy 9 times. The utility of UAV network in 4 scenarios are shown in Fig. 6, and the 

average utility of UAV network in 4 scenarios when the jamming UAVs change their jamming 

strategy are shown in Fig. 7. The average utility of uav network against nine times smart 

jamming attack are shown in Table 6. 

 

 

In the simulation of 4 scenarios we conducted, scenarios 1 and 4 can be deployed in a real 

environment, and scenarios 2 and 3 are for comparison only, and are not realistically feasible. 

This is because we deployed the DDPG and A3C deep learning algorithm on the UAV 

platform in scenarios 2 and 3, but neither the power resources nor the computing resources of 

the UAV platform can support the real-time training of the deep learning algorithm. 

The experimental results show that, without the support of cloud computing center or edge 

servers, the network performance is very poor only relying on the Q-learning algorithm on the 

UAV platform for anti-jamming decision. For example, Fig. 7 and Table 6 show that the 

maximum average network utility of scenario 1 that does not rely on cloud computing center 

and edge support is 0.52493, far less than the minimum value of the other three scenarios, 

which is 1.04885. The simulation results also show that the performance of A3C algorithm 

Table 6. Average utility of UAV network against 

nine times smart jamming attack 

 Q-learning DDPG A3C A3CTQ 

1 0.40668  1.04885  1.32220  1.13869  

2 0.47486  1.14631  1.30424  1.16067  

3 0.44746  1.07666  1.25746  1.10192  

4 0.47224  1.20989  1.27152  1.14688  

5 0.52493  1.09835  1.36089  1.22525  

6 0.47389  1.22492  1.33674  1.23027  

7 0.42943  1.23520  1.39541  1.13140  

8 0.50541  1.11916  1.35949  1.22849  

9 0.47199  1.23591  1.41785  1.23222  

 

 

 

Table 7. Cost of UAV network 

with different CPU cycles 

CPU 

Cycles 

 410  

Local Edge Cloud 
Game 

theory 

1 0.005005  2.503001  3.002500  0.000005  

5 0.025025  2.513005  3.002501  0.000125  

10 0.050050  2.525510  3.002501  0.000501  

20 0.100100  2.550520  3.002502  0.002002  

500 2.502500  3.751000  3.002550  1.251250  

1000 5.005000  5.001500  3.002600  1.801320  
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deployed in the cloud is better than that of DDPG algorithm deployed on the edge. When using 

A3C algorithm, the network utility is 0.18117 higher than DDPG algorithm, with an increase 

of 15.69%. If we adopt our A3CTQ algorithm which can be deployed in the low-cost UAV 

swarm, the network utility is only 11.89% lower than that of A3C algorithm, which is close to 

the performance of undeployed DDPG algorithm (only 1.93% performance gap). With the 

help of cloud and edge, the performance of our algorithm is improved by 0.70988 (up to 

151.87%) compared with the original Q-learning algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the UAV network, the cluster size has an important impact on the ability of anti-jamming. 

In order to verify the effect of the number of UAVs on the anti-jamming capability, we set the 

number of jammers to 5 and the number of UAVs to 2, 5, 10, and 20 respectively for 

simulation experiments. Each experiment carried out 10 episodes, and each episode carried 

out 3000 steps. The other parameters of the simulation experiment are the same as the above 

experiment.  

Simulation results show that as the number of UAVs increases, the average SINR of the 

UAV network continues to increase and the variance continues to decrease. When the number 

of drones is significantly smaller than the number of jammers, the average SINR of the 

network is negative, and when the number of UAVs is greater than the number of jammers, the 

average SINR is positive. Under all parameters, as the time slot increases, the average SINR 

generally shows an increasing trend, but the network's limit SINR tends to be close to 15db. 

When the number of UAVs is more than twice the number of jammers, the average SINR of 

the network increases slowly. Under 4 sets of simulation parameters, the average SINR of the 

last 1000 time slots are -7.24268、2.39549、9.81378、14.23486 respectively. 

Now, we verify the performance of the proposed offloading algorithm. The idea of 

verifying the algorithm is to fix the data size of the model parameters and examine the cost of 

the offloading algorithm under different CPU frequencies. After that, we fixed the CPU 

frequency required for the calculation task, and examined the network cost function value 

under the data size of different model parameters. There are four algorithms involved in the 

comparison, namely: (i) Local Computing, (ii) Offloading to Edge servers, (iii) Offloading to 

Cloud and (iv) proposed game theory algorithm. We choose the network cost as the metric, 

which consists of two parts, namely delay and energy consumption. We assume the important 

weight of delay is equals to the important weight of energy consumption, then we set 
1/ 2   .  

 
Fig. 9.  The cost of UAV network with different 

CPU cycles where data size is 5kb 

 
Fig. 10.  The cost of UAV network with 

different data size 
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We first examine the impact of different CPU cycles required by anti-smart jamming 

algorithms on our offloading algorithm performance. The UAV platform has weak computing 

power, so we set the UAV platform CPU frequency to 1Ghz. The edge servers deployed in the 

ground control station are usually high-performance servers, therefore we set their CPU 

frequency to 5GHz. The cloud server is a high-performance server cluster, and we set its CPU 

frequency to 50GHz. The energy consumption is composed of two parts: CPU calculation 

energy consumption and ground-air communication energy consumption. We assume that the 

computational energy consumption generated by the UAV platform for each CPU cycle is 

1
610 J, and the computational energy consumption of the edge server is 0.5

610 J. Since the 

cloud computing center has sufficient energy, its energy consumption is negligible. In the 

network model of this article, UAV does not have a direct link to the cloud, so computing 

offloading to the cloud needs to be forwarded by the edge server. Therefore, this article 

assumes that the communication energy consumption of the UAV platform to offload a 

computing task to the edge server is 1.2
310 J, and the communication energy consumption of 

offloading to the cloud is 
31.0 10 J. The communication bandwidth from UAV platform to the 

edge server is 5Mbps/s, and the communication bandwidth to the cloud is 1Mbps/s. We set the 

health threshold 1t is 50ms and failure threshold 2t  is 2000ms. 

We set the size of data needed to offloading to 5kb, and study the effectiveness of our 

proposed offloading algorithm under anti-smart jamming algorithm with different calculation 

complexity where CPU cycles is 1, 5, 10,20, 500 and 1000 (
410 ) respectively. The simulation 

results are shown in Fig. 9 and Table 7. We can see that the performance of our proposed 

algorithm based on game theory outperforms the three other algorithm. The cost for offloading 

game algorithm increases slowly with the CPU cycles. From Table 7 we find that the 

performance of offloading to cloud algorithm remains basically unchanged, and the cost of 

UAV network is about 3.0025. This is because the computing cost of the cloud is extremely 

low, so when the data size does not change, the cost of the cloud will basically remain the same. 

When the CPU cycle is between 20 and 500 (
410 ), the performance of offloading to edge 

algorithm is worse than that of the cloud. This is because as the CPU cycle increases, the 

intelligent algorithms used become more and more complex, and the gap between the 

computing performance of edge servers and the cloud gradually appears. For similar reasons, 

the performance of cloud algorithms is gradually better than UAV local computing. When the 

CPU cycle is 500 (
410 ), the offloading to cloud algorithm has 0.74845 advantage over the 

edge algorithm. When CPU cycle is 1000 (
410 ), this cloud algorithm has 1.9989 advantage 

over local computing. The proposed game algorithm makes the three baseline algorithms work 

together. The average cost of the proposed game algorithm is 0.7721 lower than the local 

algorithm, 2.63156 lower than the edge algorithm and 2.49333 lower than the cloud algorithm. 

Then we examine the impact of different data size on our offloading algorithm performance. 

The data size is related to the discretization accuracy of the state space, the number of UAVs 

and the number of communication channels. We set CPU cycle to 5000000 which is 

associated with a deep reinforcement learning algorithm, and study the effectiveness of our 

proposed offloading algorithm where the data size is 10, 100, 500, 1000, 5000 and 10000 bits 

respectively. The simulation results are shown in Fig. 10 and Table 8. We find that the 

performance of our proposed algorithm outperforms the three other algorithm. The average 

cost of the proposed game algorithm is 2.15646 lower than the local algorithm, 2.28891 lower 

than the edge algorithm and 1.31640 lower than the cloud algorithm. The cost of offloading to 

local is always 2.50250. This is because local computing has only computational energy 

consumption but no communication energy consumption. Therefore, the performance of the 
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local algorithm does not change with the data size. As the data size increases, the cost of 

communication will increase. As shown in Fig. 10, when the data size is greater than 1kb, the 

cost of the edge algorithm and the cloud algorithm both exceed the local algorithm. This also 

confirms the necessity of introducing 5G communication technology into the UAV network. 

The above two simulation scenarios together prove the effectiveness of our proposed 

algorithm.  
 

Table 8. Cost of UAV network with different data sizes 
Data 

Sizes 
Local Edge Cloud Game theory 

10 2.50250  1.25550  0.00606  0.00001  

100 2.50250  1.30051  0.06010  0.00058  

500 2.50250  1.50055  0.30030  0.01443  

1000 2.50250  1.75060  0.60055  0.05769  

5000 2.50250  3.75100  3.00255  1.00176  

10000 2.50250  6.25150  6.00505  1.00176  

7. Conclusion 

In this paper, we propose an A3CTQ algorithm which can be deployed in the low-cost UAV 
swarms. This algorithm can effectively use the cloud and edge computing power to maintain a 
high level of smart anti-jamming decision-making ability when the network communication 
session may be interrupted by smart jamming attack. In order to improve the feasibility of 
algorithm deployment, we establish a game model for distributed control of computing offload 
to cloud and edge. The simulation results show that when the network communication session 
may be interrupted due to smart jamming attacks, the performance of our algorithm is 
151.87% higher than that of the original Q-learning algorithm.  

In this paper, we assume that the jamming sources in different geographical locations must 
use the same channel jamming mode at the same time. In the next research, we will deeply 
study the situation that the jamming modes of multiple jamming sources are not uniformly 
selected and the jam. 
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