
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, Dec. 2020 4682

Copyright ⓒ 2020 KSII

This research was supported by the National Natural Science Foundation of China under Grant 62071483.

http://doi.org/10.3837/tiis.2020.12.004 ISSN : 1976-727

Smart Anti-jamming Mobile
Communication for Cloud and Edge-Aided

UAV Network

Zhiwei Li1, Yu Lu1*, Zengguang Wang2, Wenxin Qiao1, and Donghao Zhao1

1 Shijiazhuang Campus, Army Engineering University of PLA

Shijiazhuang, 050003, China

[e-mail: arhqs@126.com, luyubj@163.com, qiaowenxin1992@foxmail.com, zhaodonghao1@sina.com]
2 National Defense University

Shijiazhuang, 050000, China

[e-mail: zengguang_wang@126.com]

*Corresponding author: Yu Lu

Received July 29, 2020; revised November 9, 2020; accepted December 6, 2020;

published December 31, 2020

Abstract

The Unmanned Aerial Vehicles (UAV) networks consisting of low-cost UAVs are very

vulnerable to smart jammers that can choose their jamming policies based on the ongoing

communication policies accordingly. In this article, we propose a novel cloud and edge-aided

mobile communication scheme for low-cost UAV network against smart jamming. The

challenge of this problem is to design a communication scheme that not only meets the

requirements of defending against smart jamming attack, but also can be deployed on low-cost

UAV platforms. In addition, related studies neglect the problem of decision-making algorithm

failure caused by intermittent ground-to-air communication. In this scheme, we use the policy

network deployed on the cloud and edge servers to generate an emergency policy tables, and

regularly update the generated policy table to the UAVs to solve the decision-making problem

when communications are interrupted. In the operation of this communication scheme, UAVs

need to offload massive computing tasks to the cloud or the edge servers. In order to prevent

these computing tasks from being offloaded to a single computing resource, we deployed a

lightweight game algorithm to ensure that the three types of computing resources, namely

local, edge and cloud, can maximize their effectiveness. The simulation results show that our

communication scheme has only a small decrease in the SINR of UAVs network in the case of

momentary communication interruption, and the SINR performance of our algorithm is higher

than that of the original Q-learning algorithm.

Keywords: Anti-Jamming, A3C, Edge Computing, IoT, UAV Network

mailto:arhqs@126.com
mailto:luyubj@163.com
mailto:qiaowenxin1992@foxmail.com

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4683

1. Introduction

Low-cost Unmanned Aerial Vehicles (UAV) swarm have broad application prospects in

military and civilian fields such as agriculture, logistics, reconnaissance, and communication

relay. Due to the open wireless communication environment, UAVs are vulnerable to spoofing,

jamming and eavesdropping attacks. Information encryption can effectively defend against

spoofing attacks. Artificial noise also has an obvious defense effect against eavesdropping

attacks. However, the implementation cost of jamming attacks is extremely low and can be

launched without relying on any prior information. This makes jamming attacks the most

common security threat to UAV networks.

By applying programmable radio devices such as universal software radio peripherals

(USRP), smart jammer can observe the ongoing communication states between UAVs and

then choose the optimal jamming strategies accordingly. Compared with the traditional

jamming attack, any single mode anti-jamming strategy such as frequency hopping spread

spectrum (FHSS) or direct sequence spread spectrum (DSSS) can hardly achieve the expected

anti-jamming effect. Therefore, the communication strategies between UAVs must also be

smart and programmable. Game theory can well model this kind of decision-making

confrontation problem. However, the solution of traditional game problems requires

knowledge of a large amount of information such as UAV and jammer strategies, channel

models, and revenue models. This information is not only highly confidential, but also

dynamically changing. In other words, in a highly dynamic environment, the game model

cannot be solved.

The essence of the smart anti-jamming problem of UAV networks is how to make

intelligent decisions. With the development of reinforcement learning, especially deep

reinforcement learning algorithms, it has brought dawn to the solution of this problem.

Although the smart anti-jamming technology based on deep reinforcement learning

algorithms continues to make progress, it can only be applied to high-performance single

UAV, but not to UAV swarms. This is because UAV swarms are composed of low-cost UAVs,

and the deployment of these algorithms directly will face three serious difficulties. First, deep

reinforcement learning algorithms cannot perform the model training process on mobile

devices. Current deep learning frameworks, such as TensorFlow Lite, can deploy trained deep

models to mobile devices, but deep models cannot be trained in real time on mobile devices. In

other words, the parameters of the model cannot be updated as the jamming strategy changes.

Second, although tabular reinforcement learning algorithms can be deployed on low-cost

UAV platforms, the state space and action space of the anti-jamming decision problem are

continuous, which will cause dimensional disaster problems. Simple discretization will make

it difficult for the tabular models to converge. Finally, there is a solution that seems to be

feasible. The UAV platform offloads computing tasks to the cloud or the edge, and UAV

receives the results from cloud computing or edge computing and then makes decisions. The

problem is that due to the existence of jamming sources, the service quality of the UAV

network is extremely unstable, and it is easy to appear that computing tasks cannot be

offloaded or calculation results cannot be received.

In this work, we propose an A3C teaches Q-learning (A3CTQ) algorithm based on cloud

computing and edge computing to solve the above problems. The main idea of the algorithm is

to transfer the intelligence contained in cloud computing power to the UAV platform to help

UAVs make reasonable decisions when offline. Specifically, the cloud computing center

4684 Li et al.: Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Networ

gathers the state data collected by all the UAV platforms, and feeds these data to the A3C

algorithm for parallel calculation with nearly unlimited computing power to obtain a cloud

policy network. Similarly, the edge servers collect regional state data and feed these data to the

DDPG algorithm to obtain the edge policy network. The cloud policy network playing the role

of expert trains a Q-table and a policy network through an inverse reinforcement learning

algorithm. The cloud model helps to update models in UAV platforms and edge servers. This

parameter update is the process in which cloud intelligence flows to the UAV platforms and

the edge servers. When offline, UAV uses Q-tables updated by the cloud to complete

decision-making tasks. When the network is connected, the UAV platform will send all the

state data collected during the offline period to the cloud. As long as the network

disconnection is not too long, the decision-making ability of the UAV platform will not be

significantly reduced.

The main contributions of this paper are summarized as follows:

• We establish a cloud and edge-aided communication scheme to solve the problem of

anti-jamming communication of UAV networks to reduce the performance loss caused

by intermittent network interruptions.

• We build a game model to solve the computational offloading problem of UAV

networks facing intermittent disconnection of communication link.

• We design an A3CTQ algorithm that transfers cloud intelligence to the UAV platform

to solve the problem of continuous anti-jamming control of UAV networks with

intermittent communication link interruption.

The rest of this paper is organized as follows. We review related work in Section 2 and

present the system model in Section 3. We propose a cloud and edge-aided UAV network

communication scheme and introduce the details of the A3CTQ algorithm in Section 4. We

build a game model to implement decentralized control of computational offloading in Section

5. We provide simulation results in Section 6 and conclude this work in Section 7.

2. Related Work

Smart jamming attack which has the ability of strategy learning makes the anti-jamming effect

of relying only on the physical layer technology very unsatisfactory. The problem of smart

jamming was first proposed in [1], and game theory proved to be a powerful theory to solve

the problem of smart jamming. The authors in [2] transferred this problem of using game

theory to model anti-smart jamming to the field of cognitive radio for the first time. Since then,

almost all the anti-smart jamming related researches are based on game theory to establish the

decision models.

Early studies were based on the perfect observation assumptions, and some excellent works

[3-6] based on the imperfect observation assumptions to study anti-jamming problems

appeared after that. For example, with considersing the situation where users do not know the

type of the jammers, a Bayesian game was used to model the anti-jamming problem[3, 4]. A

Bayesian Stackelberg game was used to model the interactions between user and smart

jammer[5]. The authors in [6] has formulated the jamming game with imperfect information,

i.e., the jammer’s bounded rationality and inaccurate observation of the user’s action.

The incomplete information game makes the modeling of this problem more realistic, but

the solution of the model also encounters the problem of incomplete information. Most of the

work introduced before is solved by planning theory and optimization theory. But a lot of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4685

information needed to solve the problem is difficult to obtain, such as channel gain, the

position of the jammer, maneuvering mode and jamming power allocation strategy.

Reinforcement learning algorithms, especially model-free reinforcement learning

algorithms, have brought dawn to the solution of the this tough problem. The model-free

reinforcement learning algorithm continuously collects the interactive data generated by

interacting with the environment, and learns anti-interference strategies from these data.

Therefore, the algorithm does not require any prior knowledge. In [7], the authors were the

first to use Q-learning algorithm to solve the smart jamming problem in cognitive radio

network. The problem of multi-agent anti-intelligence interference decision-making has

gradually become the focus of researchers. In [8], the authors used a multi-agent Q-learning

algorithm called femto-based distributed and sub-carrier-based distributed power controls

using Q-learning (FBDPC-Q) to deal with the aggregate macrocell and femtocell capacities.

Considering the impact of the channel estimation error, a Q-learning based power control

algorithm using non-cooperative game theory was proposed to suppress the joint smart

jamming attack[9]. In [10], the authors used UAVs to relay the messages and improve the

communication performance of VANETs with a Q-learning based scheme. The application

areas of Q-learning algorithms continue to expand. In [11], the authors solve the anti-jamming

problem of UAV radar network based on the double greedy Q-learning algorithm. The

Q-learning algorithm associated with an onedevice federated jamming detection mechanism

[12] played an important role in the defense against smart jamming attack in FANET.

However, the shortcomings of the table-driven Q-learning algorithm have gradually

emerged. In the multi-agent system anti-intelligence interference problem, the state space of

the problem to be solved is very large. Consider a typical communication system composed of

multiple UAVs, where each UAV’s receiver has multiple channels and the UAVs can perform

autonomous maneuvering. The high dimensionality of the state space of the system can easily

cause dimensional disasters, making the Q-learning algorithm unable to work. The

combination of deep learning technology and reinforcement learning technology can perfectly

solve this problem. The authors in [13] proposed a hotbooting deep Q-network based 2-D

mobile communication scheme to address the smart jamming problem. The algorithm is

deployed in a robot that can move on the ground, not in a UAV platform. In [14], a deep

Q-learning-based UAV power allocation strategy combines Q-learning and deep learning was

proposed, but this research only studied the scenario of one UAV rather than UAV network.

The authors in [15] extended the DQN algorithm to the scenario of incomplete information

game, and proposed a deep recurrent Q-networks (DRQN) in the three-dimension space to

obtain the optimal anti-jamming strategy with incomplete channel state information(CSI).

It is worth noting that the research on anti-smart jamming is mainly concentrated in wireless

networks, and there is almost no related research on UAV networks, except for UAV-aided

networks. In [16], the authors systematically reviewed the applications and challenges of

UAV-aided networks. In [17], the authors focused on the anti-jamming techniques in

VANETs and proposed a hotbooting policy hill climbing (PHC)-based strategy to deal with

this kind of jamming. Beak et al. [18] developed a future UAV-aided tactical data link to

improve the reliability of military communication. Further more, Xiao et al. [10] combined the

PHC frame and Q-learning algorithm to solve the problem of smart jamming in UAV-aided

VANETs without knowing the VANET model and jamming model. The advantages of deep

learning are also reflected in UAV-aided networks, on the basis of previous studies, in [19] the

authors combined the reinforcement learning algorithm with deep learning techniques to

address the issue of dimensional curses.

4686 Li et al.: Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Networ

Later researchers have made continuous progress in theoretical research on anti-smart

jamming attacks, but they have not considered enough on how to deploy related algorithms,

especially deploted on low cost UAV swarm. We know that low-cost UAV platforms are

energy-constrained and cannot deploy deep reinforcement learning algorithms. Zhou et al. [20]

proposed a mobile edge computing (MEC) system to support the deployment of decision

algorithm. However, the problem of deep reinforcement learning algorithm failure caused by

intermittent communication interruption has not been paid attention to by researchers.

By reviewing the above works, we draw the following conclusions. The game theory model

is very suitable for solving the problem of resource optimization in wireless communication in

a decentralized scenario. However, the overly complicated calculation method of the reward

function makes the previous game models cannot directly applicable to low-cost drone

platforms. The lightweight computing offloading algorithm is more suitable for UAV swarms.

At present, there is almost no related work on smart anti-jamming of UAV swarms, especially

when network communication is intermittent.

3. System model

The functional flow diagram of the proposed A3CTQ communication scheme consists of five

parts. The first part is data collection. Each UAV collects information such as channel gain,

signal to inference plus noise (SINR) value of each receiver, location of jamming sources from

the environment or smart jammers. The second part is computing task dispatch. A game theory

algorithm is running to dispatch the current computing task to the cloud, the edge servers of

local. The third part is decision-making. The cloud strategy is calculated by the A3C algorithm,

the edge strategy is calculated by DDPG algorithm and the local strategy is calculated by

Q-learning algorithm. And the priority of the strategy decreases sequentially, that is, the cloud

strategy has the highest priority and the local strategy has the lowest priority. The fourth part is

implementation. The UAV starts a timer after dispatching the calculation task. When the timer

expires, the strategy with the highest priority received is selected as the UAV strategy and

implemented. The fifth and the final part is update. We use the cloud A3C algorithm as an

expert strategy, and use reverse reinforcement learning algorithms to guide offline training of

DDPG and Q-learning algorithms to continuously improve offline decision-making

capabilities.

Fig. 1. The function description diagram of A3CTQ scheme

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4687

3.1. Communication model

As shown in Fig. 2, the communication model consists of three parts. The first part is UAV

network, and its network topology is hierarchical mesh network. The backbone mesh network

consists of backbone UAVs. The backbone UAVs have strong communication capabilities

and a long distance for sending and receiving information. Each backbone UAV establishes a

homeland area around it, and there are several small and low-cost mission UAVs in the area.

Cross-domain communication of mission UAVs requires relay services from backbone UAVs.

GPS is responsible for providing timing and positioning services for UAVs. Jamming UAVs

can approach backbone UAVs and mission UAVs and launch smart jamming attack based on

cognitive radio technology.

The second part is the ground station network. The ground stations maneuver within the

communication range of the backbone UAV, and use data link technology to maintain

communication with the backbone UAV. Ground stations maintain communication through

microwave relays. Since the ground station is far from the mission area, it is assumed that the

communication link between the ground stations cannot be jammed. The working area of

mission UAVs is supported by base stations.

The third part is the cloud computing center. The UAV network communicates with the

cloud computing center through the base station with 4G or 5G cellular communication

technology. The base station is connected to the cloud computing center through an optical

fiber link. The base station is in an urban environment with a complex electromagnetic

environment, and it is difficult to effectively control jamming sources in the city. Therefore, it

is assumed that the air interface links between the base stations and the UAVs will be

interfered with and intermittently interrupted. The links between the base stations are

fiber-optic and are not subject to interference.

Fig. 2. Topology of UAV network under the support of cloud computing center and edge servers

3.2 Computation model

The computing model studied in this paper includes three types of computing resources,

namely local computing resources on UAVs, edge computing resources on ground stations,

and cloud computing resources connected to remote cloud computing center. For the first,

local computing power is provided by embedded chips on UAVs, such as the ARM Cortex

A72 processor for the Raspberry Pi. This computing power has almost no delay, but due to the

4688 Li et al.: Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Networ

limitations of the UAV platform, high-intensity calculations cannot be performed. The second

type of computing power is the computing power on the ground station. The on-board

platform can provide strong GPU computing power, and it is directly connected to the UAV

through the data link, and the delay is small. The third kind of computing power is the remote

cloud computing center. The cloud computing center can provide almost unlimited computing

power. However, the air interface link between the UAV and the cloud computing center can

be easily jammed. The ground link to the cloud computing center needs to be forwarded

through multi-hop routing, and the transmission jitter and delay of the data packets are large.

The features of the three computing resources are shown in the Table 1.

Table 1. Features of three computing resource

Computing Resources Advantages Disadvantages

Local UAV No latency
Poor computing ability;High

energy consumption

Ground Station

as Edge Server

Saving the energy of UAV;

Low latency;

Strong computing ability;

Node location can be

redeployed

Computing power be

overloaded

Remote Cloud Computing

Center

Saving the energy of UAV;

Extremely strong computing

ability;

High latency;

High jitter;

Access points are fixed and

vulnerable

The data transmitted from the UAV platform to the ground station and the cloud computing

center are real-time environmental state data collected by the UAV sensors. The ground

station and cloud computing center receive the state data and feed the data to the A3CTQ

distributed deep reinforcement learning algorithm established in Section 4 for intensive

calculations. The calculation results are sent back to the UAV platform.

The computing tasks generated by the UAV i are modeled as

tuples  , , ,
Local Edge Cloud

i i i state parC C C D D， . Different algorithms are used to execute the same

computing task i on different computing platforms. The three notations , ,
Local Edge Cloud

i i iC C C

indicate the number of CPU cycles required for the task i at the local, edge, and cloud

computing center. Since the format of the state data to be sent by each UAV is strictly

specified, the size of the data is expressed by a constant stateD . The state data includes the

measurement time, the current position of the UAV, the current speed of the UAV, the

transmission power of each channel, and the Signal to Interference plus Noise Ratio (SINR) of

each channel. After receiving the state data, the cloud computing center and edge servers run

the A3CTQ algorithm to get the updated model parameters. The model parameters include two

parts: the parameters for the Q-table of Q-learning algorithm deployed in the UAV platform

and the parameters for the edge policy network. Therefore, the size of the model parameters

parD is also a constant. Compared with resource-constrained UAV platforms, the computing

resources and power resources of ground stations and cloud computing centers are sufficient,

so the calculation cost after data unloading is ignored, and the energy consumption cost of data

transmission to the UAV platform is negligible.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4689

3.2.1 Local Execution

The time required to calculate locally on the UAV platform is in [20].

 /
Local Local

Local iT C F , (1)

where Local
F is the CPU frequency of the local UAV platform. Because computing tasks are

offloaded locally, there is no data transfer delay.The energy consumption of the computing

task i being offloaded to the local is

Local Local

Local iE C e , (2)

where Local
e is the energy consumed by each CPU frequency of the UAV platform. The local

calculation does not consider the energy consumption of data transmission.

3.2.2 Offloading to Edge

The time required to calculate on edge server is [20].

    1 / /Edge Edge Edge

Edge i state par EdgeT C Q F D D R    , (3)

where Edge
F is the CPU frequency of the edge platform. /

Edge Edge

iC F is the edge computing

time of the task i .
Edge

Q is the length of the cache queue for unfinished tasks sent by other

UAVs. Edge
R is data transfer rate from UAV platform to edge. The total time to receive and

send data is   /state par EdgeD D R .The energy consumption of the computing task i being

offloaded to the edge is

Edge

Edge stateE D e , (4)

where Edge
e is the energy consumption of UAV sending each unit of data to the edge. We

ignore the energy consumption of receiving data.

3.2.3 Offloading to Cloud

Similar to the case of offloading to the edge, the time required to calculate on cloud is

    1+ / /Cloud Cloud Cloud

Cloud i state par CloudT C Q F D D R   , (5)

The energy consumption of the computing task i being offloaded to the edge is

Cloud

Cloud stateE D e . (6)

Due to the limitation of the power resources of the UAV platform, when the power of the UAV

is insufficient, the UAV needs to return to the base, and another UAV will take over the UAV

4690 Li et al.: Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Networ

to continue the task. When the number of UAV in a swarm is large, it can be approximated that

the occurrence of UAV mission succession events is uniform, so that the cost of energy

consumption has a linear correlation with the cost of time consumption. From the analysis, we

can establish the following payment function:

cost
Z T E   , (7)

where the weight parameters  ， are used to adjust the ratio of calculation cost and energy

consumption cost.

3.3 Channel and jamming model

According to [10], the channel model of air-to-air and ground-to-air links for UAVs can be

modeled as a log-normal shadowing model with constant channel power gains. The path loss

denoted by PL can be modeled by

     0

0

dB dB 10 lg ,
d

PL d d
d

 
 

   
 

, (8)

where v is antenna gain constant, and 0
d is the reference distance, and  is the pass loss

exponent at reference distance.

It can be seen from the communication model in Fig. 1 that the jammer can interfere with

three kinds of links, one is the link between the UAVs, one is the link from the UAV to the

ground station, and one is UAV-to-tower link. Among them, the first link is an air-to-air link,

and the latter two are air-to-ground links. Among them, the air-to-air link belongs to free space

propagation, and we take its path loss exponent as 2, and the ground-to-air link is affected by

multipath effect, and we take its path loss exponent as 4.

3.4 Utility model

The utility model comprehensively considers the two factors of communication quality and

data offloading quality. This model is the final evaluation model in this paper. The network

utility has a positive correlation with the expected SINR of each channel of the UAV platform.

However, we believe that the network utility and the offloading cost cos t
Z in Eq. (7) are not

simply negative correlations.

cos t
Z can effectively prevent computing tasks from being offloaded to a single computing

node. However, it is impossible to describe the effect of offloading on improving the

anti-jamming decision. Therefore, we define a delay sensitivity function  .latencyf to

characterize this relationship. This function is defined by

  

1

1

1 2 1 2

2 1

2

1

, ,

0

latency

t t

t t
f t t t t t t

t t

t t

 



  


 

, (9)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4691

where 1 2
,t t are two time-value thresholds. Specifically, 1

t is called a health threshold. If the

UAV can receive the calculation result from the cloud or the edge within 1
t time, there is no

value loss. Specifically, after UAV offloads computing tasks to the cloud or edge server, it

starts to run local decision-making algorithms. We assume that the expected time required for

the local decision algorithm is 1t . Then, when the time for receiving the returned remote

calculation result is less than 1t , no additional time delay will be generated, and therefore, no

additional time delay will be generated by the calculation offloading. 2
t is called the failure

threshold. If the UAV has not received the calculation results until time 2
t , it is considered that

this offloading has no value. We know that smart jamming attacks can periodically change the

attack strategy. We assume that the average time for smart jamming strategy update is t2. If the

time required for offloading is greater than t2, it is meaningless when the remote calculation

result is returned to the UAV. If the receiving time is between the two, the benefit is

considered to be linearly discounted. The value-optimized network utility model is given by

   1 2 cos/ , ,latency cost tUtility SINR f Z t t Z . (10)

When the number of UAVs in the network is not too large, energy cost cannot be simply

considered to be proportional to time cost, so it cannot be approximated by parameter  . In

this case, the network utility function is modeled as

   1 2
max sgn ,0 , ,UAV

k latency battery threshold
Utility f T T E e t t SINR   (11)

where therosholde is threshold level that requires battery replacement, and E is the remaining

power of UAV.

Fig. 3. Cloud and edge-aided UAVs network communication scheme

4692 Li et al.: Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Networ

4. Cloud and edge-aided UAV network communication scheme

As shown in Fig. 3, there are three types of communication entities in the communication

scheme, namely UAV platform, edge server and cloud computing center, in which the UAV

platform is responsible for environment perception, and the edge servers and cloud computing

center are responsible for computing power support. In other words, the UAV platform is the

source of environmental awareness, and the cloud computing center is the upper limit of

computing power. The capabilities of these two entities are completely asymmetric, and the

edge servers play a balancing role between them.

Fig. 4. Schematic diagram of the data flow of the A3CTQ algorithm deployed at the edge

The edge has a compromised computing power and a compromised state data collection

capability. The contribution of the edge to the intelligent decision of the system comes from

the decentralized deployment of its spatial location. As the source of environmental awareness

and the end point of action capabilities, the UAV platform's contribution to system intelligence

is reflected in distributed parallel discovery and fast execution. The cloud computing center

relies on its powerful computing power to extract action strategies from state data. The cloud

computing center plays the role of a factory that processes the input state data into intelligent

model parameters.

Based on the above analysis, we have designed an architecture that transmits perception

from the UAV platform to the ground through computational offloading, and the intelligence

processed by cloud computing is transmitted to the air as model parameters.

Specifically, we designed a distributed A3C teach Q-learning algorithm (A3CTQ). The

A3C algorithm is deployed and run in the cloud computing center, and A3C's strategic

network is used as an expert. The reverse reinforcement learning algorithm is used to imitate

A3C's decision-making ability. A Q-learning form is trained and deployed to the UAV. At the

same time, a DDPG algorithm's Actor strategy network is trained by the reverse reinforcement

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4693

learning algorithm and updated to the edge server. When the UAV is intermittently

disconnected, the UAV is assisted by the Q-learning algorithm on the platform.

The algorithm running on the UAV platform is shown in Table 2. The algorithm first

initializes the relevant parameters of the Q-learning algorithm, and then runs the calculation

power offloading algorithm described in Section 5.3 to determine where the calculation tasks

should be offloaded. If local computing power is selected, the drone platform runs the standard

q-learning prediction algorithm and updates the Q-table, then reads the sensor's SINR data,

calculates the network utility, and forms an experience to send to the cloud computing center

and edge. If the cloud or edge computing power is selected, the UAV platform starts a timer,

and the cloud and the edge simultaneously calculate the best action strategy at the fastest speed

and send it to the UAV platform, and then process the received experience data.

Table 2. Cloud-assisted Q-learning algorithm deployed in UAVs

Algorithm 1: Cloud-Assisted Q-learning Algorithm

Input: jamming power vector  k
y ,  k

SINR calculated by receiver UAV, reward vector  k
u

and  k
x generated by policy models in edge servers or cloud computing center

Output: Q-table deployed in UAV platform
1 Initialize

 1
, , ,   s .

2    , 0, 0, ,Q V  s x s s x .

3 For 1, 2,3,k 

4 Choose a certain Computing Entity to offloading from UAV, edge or Cloud by gaming

algorithm:

5 Case offloading to UAV Local:

6 Choose  k
x with 

7 Transmit signals with power  k
x ;

8 Observe
   

,
k k

y SINR and  k
u ;

9
 Update

    ,
k k

Q s x and
  k

V s ;

10
   1k k

s y

11 End case

12 Case offloading to Edge:

13 Transmit
   

,
k k

y SINR and  k
u to Edge

14 Receive  k
x from Edge

15 End case

16 Case offloading to Cloud:

17 Transmit
   

,
k k

y SINR and  k
u to Cloud

18 Receive  k
x from Cloud

19 End case

20
 Update

    ,
k k

Q s x and
  k

V s of UAV from Cloud

21 End for

4694 Li et al.: Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Networ

Table 3. Cloud-assisted deep deterministic policy

gradient algorithm deployed in edge servers

Algorithm 2: Cloud-Assisted Deep Deterministic Policy

Gradient Algorithm

1 Randomly initialize critic network  , | QQ s x and

actor  |  s in every Edge Data Center in Ground

Station with weights
Q and

 spontaneously.

2 Initialize target network Q and  with weights

,Q Q     
 
  in each Edge Data Center

3 Initialize replay buffer D

4 For episode = 1, ,M do

5
 Initialize a UO stochastic process N for action

exploration
6

 Receive initial observation state
 1

s

7 For 1, ,k T do

8
 Select action

      
|

k k k  x s N according to

the current policy and exploration noise

9
 Execute action

 k
x and observe reward

 k
u and

observe new state
 1k

s

10

        1
, , ,

k k k k
u


 s x sD D

11
 Set

       1 1
, | |

i i i Q

iy u Q    
      s s

12 Send , iyD to Cloud Data Center

13 Update critic by minimizing the

loss:      
21

, |
i i Q

i

i

L y Q
N

  s x

14 Send the parameters of actor network  |  s to

Edge Data Center

15 Receive the comparison results between the actor

network of Edge  | u s and of Cloud  | cloud

cloud

 s

16 If    cloudJ J 

17
 cloud  

18 End if

19 Update the actor policy using the sampled policy

gradient:
20

          
,

1
, | | | |u ii i

Q

i

J Q
N





 
  

 
    x ss s x x

s x s

21 Update the target networks:

22  1Q Q Q   
 
  

23  1     
 
  

24 End for

25 End for

Table 4. Deep inversed RL imitating A3C algorithm

deployed in cloud computing center.

Algorithm 3: Deep Inversed Reinforcement Learning Imitating

A3C Algorithm at thread level

1 //Assume global shared parameter vectors  ,
 and global

shared counter 0T 

2 //Assume thread-specific parameter vectors   and  

3 //Each thread in A3C algorithm corresponds to one UAV

4 Initialize trajectory
i
 of this thread i which corresponds to

UAV i

5 Initialize thread step counter 1t 

6 Repeat

7 Reset gradients: 0d  and 0vd 

8 Synchronize thread-specific parameters    and

   

9 startt t

10 Get state ts

11 Repeat

12 Perform ta according to policy  | ;t ta s  

13 Receive reward tr and new state 1ts 

14 Store  1, , , st t t ts a r  to thread trajectory i

15 1t t 

16 1T T 

17 Until terminal ts or maxstartt t t 
18

 

0 for terminal

; for non-terminal

t

t t

s
R

V s s


 


19 For  1, , starti t t  do

20 iR r R 

21 Accumulate gradient w.r.t

    : d d log | ; ;i i ia s R V s      
   

22
 Accumulate gradient w.r.t   d ;iR V s        

23 End for

24 Perform asynchronous update of  using d and of 

using d 

25 Until maxT T

26 Send i to global network of A3C in Cloud Data Center and

Initialize global trajectory pool
global

27 Receive trajectory
edge from Edge Data Center

28

Merge all the i and
edge , global i edge

i

  
 

  
 

29 Take
global as expert experiences, and use Inverse

Reinforcement Learning algorithm to output an reward function

 .globalR and an actor network   

30 Using  .globalR to generate Q-table and transmit it to UAV to

update

31 Clone the whole group of network in Edge Data Center and train

them using  .globalR and    to generate an actor network

and send it from Cloud to Edge to update the actor network there

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4695

The algorithms deployed at the edges are shown in Table 3. The prototype of the

algorithm is a DDPG algorithm for processing continuous action space decision problems.

The algorithm consists of two parts, the actor part and the critic part. Each part contains two

deep neural networks. The two neural networks in the critic part are target network 'Q and

critic network Q . The two neural networks in the actor part are target network 'u and actor

network u . The input of the target network 'Q is the next state  1k
s

 and target action ' . Its

output is target state value 'Q . The input of the critic network Q is current state  k
s and

action  , and its output is state value Q . The TD error can be calculated by Q and 'Q , which

is the key value to update the model parameters. The actor part is also composed of two deep

neural networks. The input of target network 'u is the next state  1k
s

 and its output is target

action ' which is a input of target network 'Q . The input of actor network u is state  k
s and

its output is action  which is a input of critic network Q . The parameters of the actor

network have two update paths, one is to update the parameters through the back propagation

of TD error, and the other is to copy the parameters of the policy network trained by the

reverse reinforcement learning algorithm in the cloud. Fig. 4 clearly illustrates this process.

The A3C algorithm deployed in the cloud is shown in Table 4. Compared with the DDPG

algorithm deployed on the edge, the A3C algorithm deployed in the cloud has three main

advantages, namely asynchronous training framework, network structure optimization, and

critic evaluation point optimization. The asynchronous training framework is the biggest

optimization.

The cloud network consists of a shared network and n asynchronous networks. The shared

network is called Global Network and is responsible for the aggregation of calculation results.

Each of the n asynchronous networks corresponds to a thread, and each thread is called a

worker. Each thread has the same network structure as the public neural network. Each thread

independently interacts with the environment to obtain empirical data. These threads interact

with each other.

The cloud can get the state information of the entire network. The cloud can get the status

information of the entire network. The n workers of the A3C algorithm correspond to one

UAV. With the help of the A3C algorithm, the state information of the entire network is

effectively used, and the training process can be performed in parallel. After each thread has

accumulated enough UAV experience data, it calculates the gradient of the neural network

loss function in its own thread, but these gradients do not update the neural network in its own

thread, but instead update the global neural network. In other words, the n threads will

independently update the neural network model parameters of the common part using the

accumulated gradients. Every once in a while, the thread updates the parameters of its own

neural network to the parameters of the global neural network. The parameters of the public

network store the intelligence that can guide the UAV to make anti-jamming decisions. When

the global network converges, the global network will be used as an expert, that is, as a reward

function of the reverse reinforcement learning algorithm, to assist the UAV and the edge to

improve intelligence. With this reward function, the cloud can easily make Q-table of

Q-learning and policy network of DDPG converge. The detailed algorithm process is shown in

the Table 4.

5. Distributed computation offloading strategy

Because the network is intermittent, it is difficult to implement a centralized offloading

strategy. Therefore, we use game theory to establish a decentralized control calculation

4696 Li et al.: Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Networ

offloading strategy. In Section 3.2, we established a linear cost model of time consumption

and energy consumption. In the modeling process, we ignored the secondary factors such as

receiving energy consumption and retransmission, in order to build a lightweight model. This

is because the calculation offloading decision requires additional calculations, and if you

deploy a computationally intensive model, you will lose more than you gain.

Table 5. Cloud and edge-assisted UAV network computing offloading algorithm

In Eq. (3) and Eq. (5), we use
Edge

Q and
Cloud

Q to describe the phenomenon of centralized

offloading. In order to effectively avoid the phenomenon of centralized offloading, we

establish a game model  , ,N A G , where N denotes the number of UAVs, A denotes the

set of offloading policies, and G denotes the cost function which was built in Eq. (7). For the

convenience of model analysis, we introduce more notations. ju

i
a denotes the offloading

policy of UAV ju .

We define   ; 0 : ,1: ,2 :ju

iA s i Local Edge Cloud   . ju denotes all UAVs except ju , and

i
a
 denotes the offloading policy of ju .  ,j ju u

i i
G a a

 denotes the cost function of UAV ju ,

which is given by

  
, 0

, , 1

, 2

j

j j j

j

u

Local Local i

u u u

i i Edge Edge i

u

Cloud Edge i

T E if s

G a a T E if s

T E if s

 

 

 



  


  


 

. (12)

Algorithm 4: Computing Offloading

Input: positions of UAVs, delay and SINR of data link to edge servers and cloud computing center, task deque lengths of

UAV, edge servers and cloud computing center

Output: tasks offloading strategy (local, edge servers or cloud)

1 Initialization

2 Each UAV starts a Timer and select its first strategy 0
i

a 

3 Compute the initial value of cost function Z

4 End initialization

5 For each uav n

6 Do:

7 If (timer>t1) 0
i

a  and stop sending request to Edge or Cloud

8 If (timer>t2) choose 0
i

a  as final choose and break the loop

9 Request the number of tasks in both buffer of Edge and Cloud
10 Select the cost of new strategy ' 1 2

i
a or

11 Compute the cost of new strategy as 'Z

12 If  'Z Z then 'Z Z

13 Else try the last strategy

14 Send a request to update
15 If (request accepted) then compute  .f according to the timer and update strategy i

a

16 Else choose 0
i

a  as final choose

17 Until an Equilibrium is achieved

18 End for

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4697

We use the potential game theory to discuss the convergence of this game model. According

to the potential game theory, if we can construct a potential function for the cost function, the

game model must converge to the Nash equilibrium point. We denote the cost function of

UAV n as n
u , which can be given by

  , m

n n n

m

s
u a a

c
  , (13)

where m is equal to 0,1,2, which means local, edge, or cloud respectively, and m
s is the

expected cost of a certain UAV chosen to offload to m for calculation, and m
c c is the number

of UAVs that make the same offloading strategy in the same time except itself.

Lemma: The game model  : max , ,n n n uG u a a n N   is a strict potential game, and there is

a purely strategic Nash equilibrium.

Proof: To prove that the game model is a strict potential game, we construct a potential

function

    
1 1

,
mcM

n n m

m l

a a l 


 

 , (14)

where   m

m

s
l

l
 . If any UAV n changes its offloading strategy from n

a to '
n

a

independently while other UAVs don't change their offloading strategy, the change amount of

the cost function is

        ' '
', , 1

n n n nn n n n n n a a a a
u a a u a a c c 

 
    . (15)

Accordingly, the amount of change in its potential function is

   

       

   

' '
1 1

' '

1 1 1 1

' '

', ,

1

a a a an n n n

n n n n

n n n n

n n n n

c c c c

a a a a

l l l l

a a a a

a a a a

l l l l

c c

 

   

 

 

 

   



   
         
   

  

    , (16)

therefore, we have

        ', , ', ,n n n n n n n n n nu a a u a a a a a a      . (17)

Eq. (17) satisfies the definition of strict potential game. It can be seen that the proposed

offloading game model for UAVs is a strict potential game and has at least a pure strategy

Nash equilibrium. Finally, the expression of the potential function is given by

  

 

 

 

arg min , 0

arg min , 1

arg min , 2

i j

i j

i j

Local Local i
a A

i Edge Edge i
a A

Cloud Cloud i
a A

T E if s

a T E if s

T E if s

 

  

 









 




  

  


 . (18)

4698 Li et al.: Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Networ

The successful construction of the potential function ensures that the game process must

converge after a finite number of iterations. As shown in Table 5, we designed a simple

polling algorithm to converge the Nash equilibrium point with less computational overhead.

Each UAV in the network is initialized asynchronously, using local computing as the default

strategy, and starting a timer. If time 1
t is reached, the UAV stops sending requests to Edge or

Cloud, but still keeps listening. If time 2
t is reached, the UAV stops listening and immediately

offloads the calculation to the local. If the timer does not exceed the time limit 1
t , the UAV

sends an offload request to Edge and Cloud, and listens to the number of queued tasks sent

back by the edge. Based on the data, UAV calculates the value of the cost function of the three

offloading strategies, and changes the current strategy to the best. At the same time, the Edge

and Cloud sides also add the new requests to the queue. This process is repeated until the timer

expires or the best offloading strategy doesn’t change for a while, that is, the Nash equilibrium

is reached.

6. Simulation results

We have performed simulation experiments on UAV clusters to verify the performance of the

proposed intelligent anti-jamming algorithm. We follow the interface specification of the

environment class used by openai gym, and use python and pygame to write a simulated UAV

swarm’s flight environment. The rendering effect of the simulation program is shown in Fig. 5.

The software environment for our simulation experiments is python3.7 +pygame1.8

+pytorch1.4 +cuda10 +cudadnn7 +Gym0.15. We use GPU 2080Ti as a simulation computing

power resource. We use multi-process techniques to simulate the concurrent execution of the

A3C algorithm. We use delayed batch updates to represent the delay of edge computing and

cloud computing. Specifically, the latest batch data obtained by edge computing is delayed by

3 time slots before updating the Q-table on UAV. The latest batch data obtained by cloud

computing is dalayed by 15 time slots before updating the Q-table on UAV, and delayed by 5

time slots before updating the buffer of DDPG policy networks on the ground stations.

Fig. 5. The rendering effect of the simulation

program

Fig. 6. The utility of UAV network in 4

scenarios

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4699

The neural network consists of several fully connected layers and Relu layers. Specifically,

the DDPG network is composed of 4 fully connected layers, and the number of neurons in

each layer is 256. The A3C network consists of 16 fully connected layers, with 512 neurons

per layer. The state space of the reinforcement learning algorithm is represented by a

2-dimensional matrix. Each row of the matrix corresponds to the state of each UAV in the

UAV network. The state of each UAV is composed of two parts: channel state and position

state. The channel state is a one-dimensional vector, and the dimension is equal to the number

of channels of UAV. The value of the channel state vector represents the transmission power

allocated by the UAV to each channel. The position status is the position coordinates of the

UAV provided by GPS. The normalized channel state and the normalized position state are

concatenate into one UAV state vector.

Similarly, the action space is also represented by a 2-dimensional matrix. Each row vector

represents the action vector of a UAV. Each row vector is also composed of two parts: the

channel vector and the position vector, which respectively represent the target channel power

distribution and the target flight position. The actual power allocation strategy of the UAV in

the next time slot is the weighted average of the target power distribution and the original

power distribution. The velocity of UAV is 0.1m/time slot, and the direction of velocity is the

difference between the target position vector and the original position vector. The position of

UAV is updated every time slot.

The simulation parameters are chosen similar to [13]. The flying area of the UAVs is 4km *

3km, and the flying height is 150m ~ 500m. There are 3 ground stations with a service radius

of 500m. The radio transmission power of the UAV TP and jammer JP are both 0.4W. The

radio propagation model is given by equation (8), and we use the same parameters as [13] with

the specific values 0.075  , 0 10d  and 2
free space




 . The initial position coordinates and

directions of velocities of all the UAVs and jamming UAVs are initialized with random values.

The position of the ground station is also initialized by a random value. The mobility model of

the jammer is a random waypoint model. The number of jammer UAVs JN is 5. The jamming

strategy is frequency hopping jamming. The set of frequency hopping points is updated every

150 time slots according to the statistical rule of the detected signal.

We use communication session loss probability lost
p to simulate a communication

disconnection. When the communication session is lost, we roll back the Q-table value on the

UAV platform to the value 10 time slots ago. When the average utility value of UAV network

U   0,0.5 , 0.3
lost

p  ;when  0,5,1.0U  , 0.2
lost

p  ; when  1.0,1.5U  , 0.1
lost

p  .

In addition to utility, we use Signal to Interference plus Noise Ratio (SINR) as an important

indicator to measure communication quality. In the mesh network, each UAV node only

Fig. 8. The average SINR (db) of UAV network

Fig. 7. The average utility of UAV network

4700 Li et al.: Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Networ

communicates with neighbor nodes. We define the SINR of a UAV as the SINR of the receiver

of its closest neighbor UAV node. The signal power is the nearest neighbor transmitter power

sendP (dbm) plus the transmit antenna gain 5 (dbi) minus the propagation loss calculated by

equition (8) (db). The interference power
jammerP (dbm) is the power of all jammers plus the

antenna gain 5 (dbi), minus the propagation loss (db). Gaussian noise gain value is 5 (db).

We simulated the anti-jamming strategy of the UAV network in four scenarios. In Scenario

1, the Q-learning algorithm is deployed on the UAV platform and the communication session

loss mechanism is activated. In scenario 2, the UAV platform deploys the DDPG algorithm,

and the communication session loss mechanism is not activated. In scenario 3, the A3C

algorithm is deployed on the UAV platform, and the communication session loss mechanism

is not activated. In scenario 4, the UAV platform deploys the Q-learning algorithm, the edge

servers deploy the DDPG algorithm, the cloud computing center deploys the A3C algorithm,

and the communication session loss mechanism is activated. We performed 300 time slots

simulations for each algorithm and each time slot samples and learns from the buffer 100 times

on a computer with 3.6GHz Intel Core i9-9900, 2080Ti GPU and 48GB of RAM. The initial

parameters of each model are the values obtained after 48 hours training between single UAV

and single jamming UAV. During the simulation, the jammer randomly changed the jamming

strategy 9 times. The utility of UAV network in 4 scenarios are shown in Fig. 6, and the

average utility of UAV network in 4 scenarios when the jamming UAVs change their jamming

strategy are shown in Fig. 7. The average utility of uav network against nine times smart

jamming attack are shown in Table 6.

In the simulation of 4 scenarios we conducted, scenarios 1 and 4 can be deployed in a real

environment, and scenarios 2 and 3 are for comparison only, and are not realistically feasible.

This is because we deployed the DDPG and A3C deep learning algorithm on the UAV

platform in scenarios 2 and 3, but neither the power resources nor the computing resources of

the UAV platform can support the real-time training of the deep learning algorithm.

The experimental results show that, without the support of cloud computing center or edge

servers, the network performance is very poor only relying on the Q-learning algorithm on the

UAV platform for anti-jamming decision. For example, Fig. 7 and Table 6 show that the

maximum average network utility of scenario 1 that does not rely on cloud computing center

and edge support is 0.52493, far less than the minimum value of the other three scenarios,

which is 1.04885. The simulation results also show that the performance of A3C algorithm

Table 6. Average utility of UAV network against

nine times smart jamming attack

 Q-learning DDPG A3C A3CTQ

1 0.40668 1.04885 1.32220 1.13869

2 0.47486 1.14631 1.30424 1.16067

3 0.44746 1.07666 1.25746 1.10192

4 0.47224 1.20989 1.27152 1.14688

5 0.52493 1.09835 1.36089 1.22525

6 0.47389 1.22492 1.33674 1.23027

7 0.42943 1.23520 1.39541 1.13140

8 0.50541 1.11916 1.35949 1.22849

9 0.47199 1.23591 1.41785 1.23222

Table 7. Cost of UAV network

with different CPU cycles

CPU

Cycles

 410

Local Edge Cloud
Game

theory

1 0.005005 2.503001 3.002500 0.000005

5 0.025025 2.513005 3.002501 0.000125

10 0.050050 2.525510 3.002501 0.000501

20 0.100100 2.550520 3.002502 0.002002

500 2.502500 3.751000 3.002550 1.251250

1000 5.005000 5.001500 3.002600 1.801320

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4701

deployed in the cloud is better than that of DDPG algorithm deployed on the edge. When using

A3C algorithm, the network utility is 0.18117 higher than DDPG algorithm, with an increase

of 15.69%. If we adopt our A3CTQ algorithm which can be deployed in the low-cost UAV

swarm, the network utility is only 11.89% lower than that of A3C algorithm, which is close to

the performance of undeployed DDPG algorithm (only 1.93% performance gap). With the

help of cloud and edge, the performance of our algorithm is improved by 0.70988 (up to

151.87%) compared with the original Q-learning algorithm.

In the UAV network, the cluster size has an important impact on the ability of anti-jamming.

In order to verify the effect of the number of UAVs on the anti-jamming capability, we set the

number of jammers to 5 and the number of UAVs to 2, 5, 10, and 20 respectively for

simulation experiments. Each experiment carried out 10 episodes, and each episode carried

out 3000 steps. The other parameters of the simulation experiment are the same as the above

experiment.

Simulation results show that as the number of UAVs increases, the average SINR of the

UAV network continues to increase and the variance continues to decrease. When the number

of drones is significantly smaller than the number of jammers, the average SINR of the

network is negative, and when the number of UAVs is greater than the number of jammers, the

average SINR is positive. Under all parameters, as the time slot increases, the average SINR

generally shows an increasing trend, but the network's limit SINR tends to be close to 15db.

When the number of UAVs is more than twice the number of jammers, the average SINR of

the network increases slowly. Under 4 sets of simulation parameters, the average SINR of the

last 1000 time slots are -7.24268、2.39549、9.81378、14.23486 respectively.

Now, we verify the performance of the proposed offloading algorithm. The idea of

verifying the algorithm is to fix the data size of the model parameters and examine the cost of

the offloading algorithm under different CPU frequencies. After that, we fixed the CPU

frequency required for the calculation task, and examined the network cost function value

under the data size of different model parameters. There are four algorithms involved in the

comparison, namely: (i) Local Computing, (ii) Offloading to Edge servers, (iii) Offloading to

Cloud and (iv) proposed game theory algorithm. We choose the network cost as the metric,

which consists of two parts, namely delay and energy consumption. We assume the important

weight of delay is equals to the important weight of energy consumption, then we set
1/ 2   .

Fig. 9. The cost of UAV network with different

CPU cycles where data size is 5kb

Fig. 10. The cost of UAV network with

different data size

4702 Li et al.: Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Networ

We first examine the impact of different CPU cycles required by anti-smart jamming

algorithms on our offloading algorithm performance. The UAV platform has weak computing

power, so we set the UAV platform CPU frequency to 1Ghz. The edge servers deployed in the

ground control station are usually high-performance servers, therefore we set their CPU

frequency to 5GHz. The cloud server is a high-performance server cluster, and we set its CPU

frequency to 50GHz. The energy consumption is composed of two parts: CPU calculation

energy consumption and ground-air communication energy consumption. We assume that the

computational energy consumption generated by the UAV platform for each CPU cycle is

1
610 J, and the computational energy consumption of the edge server is 0.5

610 J. Since the

cloud computing center has sufficient energy, its energy consumption is negligible. In the

network model of this article, UAV does not have a direct link to the cloud, so computing

offloading to the cloud needs to be forwarded by the edge server. Therefore, this article

assumes that the communication energy consumption of the UAV platform to offload a

computing task to the edge server is 1.2
310 J, and the communication energy consumption of

offloading to the cloud is
31.0 10 J. The communication bandwidth from UAV platform to the

edge server is 5Mbps/s, and the communication bandwidth to the cloud is 1Mbps/s. We set the

health threshold 1t is 50ms and failure threshold 2t is 2000ms.

We set the size of data needed to offloading to 5kb, and study the effectiveness of our

proposed offloading algorithm under anti-smart jamming algorithm with different calculation

complexity where CPU cycles is 1, 5, 10,20, 500 and 1000 (
410) respectively. The simulation

results are shown in Fig. 9 and Table 7. We can see that the performance of our proposed

algorithm based on game theory outperforms the three other algorithm. The cost for offloading

game algorithm increases slowly with the CPU cycles. From Table 7 we find that the

performance of offloading to cloud algorithm remains basically unchanged, and the cost of

UAV network is about 3.0025. This is because the computing cost of the cloud is extremely

low, so when the data size does not change, the cost of the cloud will basically remain the same.

When the CPU cycle is between 20 and 500 (
410), the performance of offloading to edge

algorithm is worse than that of the cloud. This is because as the CPU cycle increases, the

intelligent algorithms used become more and more complex, and the gap between the

computing performance of edge servers and the cloud gradually appears. For similar reasons,

the performance of cloud algorithms is gradually better than UAV local computing. When the

CPU cycle is 500 (
410), the offloading to cloud algorithm has 0.74845 advantage over the

edge algorithm. When CPU cycle is 1000 (
410), this cloud algorithm has 1.9989 advantage

over local computing. The proposed game algorithm makes the three baseline algorithms work

together. The average cost of the proposed game algorithm is 0.7721 lower than the local

algorithm, 2.63156 lower than the edge algorithm and 2.49333 lower than the cloud algorithm.

Then we examine the impact of different data size on our offloading algorithm performance.

The data size is related to the discretization accuracy of the state space, the number of UAVs

and the number of communication channels. We set CPU cycle to 5000000 which is

associated with a deep reinforcement learning algorithm, and study the effectiveness of our

proposed offloading algorithm where the data size is 10, 100, 500, 1000, 5000 and 10000 bits

respectively. The simulation results are shown in Fig. 10 and Table 8. We find that the

performance of our proposed algorithm outperforms the three other algorithm. The average

cost of the proposed game algorithm is 2.15646 lower than the local algorithm, 2.28891 lower

than the edge algorithm and 1.31640 lower than the cloud algorithm. The cost of offloading to

local is always 2.50250. This is because local computing has only computational energy

consumption but no communication energy consumption. Therefore, the performance of the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4703

local algorithm does not change with the data size. As the data size increases, the cost of

communication will increase. As shown in Fig. 10, when the data size is greater than 1kb, the

cost of the edge algorithm and the cloud algorithm both exceed the local algorithm. This also

confirms the necessity of introducing 5G communication technology into the UAV network.

The above two simulation scenarios together prove the effectiveness of our proposed

algorithm.

Table 8. Cost of UAV network with different data sizes
Data

Sizes
Local Edge Cloud Game theory

10 2.50250 1.25550 0.00606 0.00001

100 2.50250 1.30051 0.06010 0.00058

500 2.50250 1.50055 0.30030 0.01443

1000 2.50250 1.75060 0.60055 0.05769

5000 2.50250 3.75100 3.00255 1.00176

10000 2.50250 6.25150 6.00505 1.00176

7. Conclusion

In this paper, we propose an A3CTQ algorithm which can be deployed in the low-cost UAV
swarms. This algorithm can effectively use the cloud and edge computing power to maintain a
high level of smart anti-jamming decision-making ability when the network communication
session may be interrupted by smart jamming attack. In order to improve the feasibility of
algorithm deployment, we establish a game model for distributed control of computing offload
to cloud and edge. The simulation results show that when the network communication session
may be interrupted due to smart jamming attacks, the performance of our algorithm is
151.87% higher than that of the original Q-learning algorithm.

In this paper, we assume that the jamming sources in different geographical locations must
use the same channel jamming mode at the same time. In the next research, we will deeply
study the situation that the jamming modes of multiple jamming sources are not uniformly
selected and the jam.

References

[1] D. Yang, J. Zhang, X. Fang, A. Richa, and G. Xue, “Optimal transmission power control in the

presence of a smart jammer,” in Proc. of 2012 IEEE Global Communications Conference

(GLOBECOM), pp. 5506-5511, 2012. Article (CrossRef Link)

[2] L. Xiao, J. Liu, Y. Li, N. B. Mandayam, and H. V. Poor, "Prospect Theoretic Analysis of

Anti-jamming Communications in Cognitive Radio Networks," in Proc. of 2014 IEEE Global

Communications Conference, pp. 746-751, 2014. Article (CrossRef Link)

[3] Y. E. Sagduyu, R. A. Berry, and A. Ephremides, “Jamming Games in Wireless Networks with

Incomplete Information,” IEEE Communications Magazine, vol. 49, no. 8, pp. 112-118, Aug.

2011. Article (CrossRef Link)

[4] A. Garnaev, Y. Liu, and W. Trappe, “Anti-jamming Strategy Versus a Low-Power Jamming

Attack When Intelligence of Adversary's Attack Type is Unknown,” IEEE Transactions on Signal

and Information Processing over Networks, vol. 2, no. 1, pp. 49-56, Mar. 2016.

Article (CrossRef Link)

[5] L. Jia, F. Yao, Y. Sun, Y. Niu, and Y. Zhu, “Bayesian Stackelberg Game for Antijamming

Transmission With Incomplete Information,” IEEE Communications Letters, vol. 20, no. 10, pp.

1991-1994, Oct. 2016. Article (CrossRef Link)

https://ieeexplore.ieee.org/document/6503997
https://ieeexplore.ieee.org/document/6503997
https://ieeexplore.ieee.org/document/7036897
http://doi.org/doi:10.0.4.85/MCOM.2011.5978424
http://doi.org/doi:10.1109/TSIPN.2015.2506038
http://doi.org/doi:10.1109/TSIPN.2015.2506038
http://doi.org/doi:10.1109/LCOMM.2016.2598808

4704 Li et al.: Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Networ

[6] L. Jia, F. Yao, Y. Sun, Y. Xu, S. Feng, and A. Anpalagan, “A Hierarchical Learning Solution for

Anti-Jamming Stackelberg Game With Discrete Power Strategies,” IEEE Wireless

Communications Letters, vol. 6, no. 6, pp. 818-821, Dec. 2017. Article (CrossRef Link)

[7] Y. Wu, B. Wang, K. R. Liu, and T. C. Clancy, “Anti-jamming games in multi-channel cognitive

radio networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 1, pp. 4-15,

2011. Article (CrossRef Link)

[8] H. Saad, A. Mohamed, and T. ElBatt, “Cooperative Q-learning techniques for distributed online

power allocation in femtocell networks,” Wireless Communications & Mobile Computing, vol. 15,

no. 15, pp. 1929-1944, Oct. 2015. Article (CrossRef Link)

[9] C. Li, Y. Xu, J. Xia, and J. Zhao, “Protecting Secure Communication Under UAV Smart Attack

With Imperfect Channel Estimation,” IEEE Access, vol. 6, pp. 76395-76401, 2018.

Article (CrossRef Link)

[10] L. Xiao, X. Z. Lu, D. J. Xu, Y. L. Tang, L. Wang, and W. H. Zhuang, “UAV Relay in VANETs

Against Smart Jamming With Reinforcement Learning,” IEEE Transactions on Vehicular

Technology, vol. 67, no. 5, pp. 4087-4097, May 2018. Article (CrossRef Link)

[11] Q. H. Wu, H. Q. Wang, X. Li, B. Zhang, and J. L. Peng, “Reinforcement Learning-Based

Anti-Jamming in Networked UAV Radar Systems,” Applied Sciences-Basel, vol. 9, no. 23, pp. 22,

Dec. 2019. Article (CrossRef Link)

[12] N. I. Mowla, N. H. Tran, I. Doh, and K. Chae, “AFRL: Adaptive federated reinforcement learning

for intelligent jamming defense in FANET,” Journal of Communications and Networks, vol. 22,

no. 3, pp. 244-258, 2020. Article (CrossRef Link)

[13] L. Xiao, D. Jiang, D. Xu, H. Zhu, Y. Zhang, and H. V. Poor, “Two-Dimensional Antijamming

Mobile Communication Based on Reinforcement Learning,” IEEE Transactions on Vehicular

Technology, vol. 67, no. 10, pp. 9499-9512, Oct. 2018. Article (CrossRef Link)

[14] L. Xiao, C. Xie, M. Min, and W. Zhuang, “User-Centric View of Unmanned Aerial Vehicle

Transmission Against Smart Attacks,” IEEE Transactions on Vehicular Technology, vol. 67, no. 4,

pp. 3420-3430, Apr. 2018. Article (CrossRef Link)

[15] N. Gao, Z. Qin, X. Jing, Q. Ni, and S. Jin, “Anti-Intelligent UAV Jamming Strategy via Deep

Q-Networks,” IEEE Transactions on Communications, vol. 68, no. 1, pp. 569-581, 2020.

Article (CrossRef Link)

[16] B. Alzahrani, O. S. Oubbati, A. Barnawi, M. Atiquzzaman, and D. Alghazzawi, “UAV assistance

paradigm: State-of-the-art in applications and challenges,” Journal of Network and Computer

Applications, vol. 166, pp. 44, Sep. 2020. Article (CrossRef Link)

[17] X. Z. Lu, D. J. Xu, L. Xiao, L. Wang, W. H. Zhuang, and IEEE, “Anti-Jamming Communication

Game for UAV-aided VANETs,” in Proc. of 2017 IEEE Global Communications Conference, pp.

1-6, 2017. Article (CrossRef Link)

[18] H. Baek and J. Lim, “Design of Future UAV-Relay Tactical Data Link for Reliable UAV Control

and Situational Awareness,” IEEE Communications Magazine, vol. 56, no. 10, pp. 144-150, 2018.

Article (CrossRef Link)

[19] X. Lu, L. Xiao, C. Dai, and H. Dai, “UAV-Aided Cellular Communications with Deep

Reinforcement Learning Against Jamming,” IEEE Wireless Communications, vol. 27, no. 4, pp.

48-53, 2020. Article (CrossRef Link)

[20] Y. Zhou, C. Pan, P. L. Yeoh, K. Wang, M. Elkashlan, B. Vucetic, and Y. Li, “Secure

Communications for UAV-Enabled Mobile Edge Computing Systems,” IEEE Transactions on

Communications, vol. 68, no. 1, pp. 376-388, 2020. Article (CrossRef Link)

http://doi.org/doi:10.1109/LWC.2017.2747543
http://doi.org/doi:10.1109/JSAC.2012.120102
http://doi.org/doi:10.1002/wcm.2470
http://doi.org/doi:10.1109/ACCESS.2018.2880979
http://doi.org/doi:10.1109/ACCESS.2018.2880979
http://doi.org/doi:10.1109/TVT.2018.2789466
http://doi.org/doi:10.3390/app9235173
http://doi.org/doi:10.1109/JCN.2020.000015
http://doi.org/doi:10.1109/TVT.2018.2856854
http://doi.org/doi:10.1109/TVT.2017.2785414
http://doi.org/doi:10.1109/TCOMM.2019.2947918
http://doi.org/doi:10.1016/j.jnca.2020.102706
http://doi.org/doi:10.1109/GLOCOM.2017.8253987
http://doi.org/doi:10.1109/MCOM.2018.1700259
http://doi.org/doi:10.1109/MWC.001.1900207
http://doi.org/doi:10.1109/TCOMM.2019.2947921

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4705

Zhiwei Li was born in Shijiazhuang, China, in 1986. He received the M.S. degree in

communication and information system from the Shijiazhuang Campus of Army Engineering

University, Shijiazhuang, China, in 2015, where he is currently pursuing the Ph.D. degree

with the UAV Engineering Department. His research interests are in the areas of

communication scheme of UAVs network, Deep Reinforcement Learning and

software-defined UAVs network.

Yu Lu was born in Luoyang, Henan, China, in 1960. He received the B.S. and M.S. degrees

in communication engineering from National Defense Technology University, Changsha,

China, and the Ph.D. degree in communication and information engineering from the Beijing

University of Aeronautics and Astronautics, Beijing, China, in 2003. He is currently a Full

Professor with the UAV Engineering Department, Shijiazhuang Campus of Army

Engineering University, Shijiazhuang, China. His research interests are in the areas of

communication scheme of UAVs network and software defined security.

Zengguang Wang received his Master's degree from Ordnance Engineering College and

the Ph.D degree in the Equipment Command and Administration Department, Shijiazhuang

Campus of Army Engineering University, Shijiazhuang, China. Now, he is an engineer at the

National Defense University. His current interests are network security and defense,

equipment support informatization.

Wenxin Qiao was born in Luoyang, Henan, China, in 1992. He received the M.S. degree in

software engineering from the Shijiazhuang Campus of Army Engineering University,

Shijiazhuang, China, in 2016, where he is currently pursuing the Ph.D. degree with the

Information Engineering Department. His research interests include networking and

communication.

Donghao Zhao received his MS degree in communication and information system from

Army Engineering University, Shijiazhuang, China. He is currently a lecturer in Shijiazhuang

Campus, Army Engineering University, China. His current interest are in areas of edge

computing and blockchain enabled UAV communication.

