• Title/Summary/Keyword: Network diameter

Search Result 289, Processing Time 0.025 seconds

THE ANALYTIC ANALYSIS OF THE CORE INJECTION COOLING FLOW RATE FOR EMERGENCY WATER SUPPLY SYSTEM IN HANARO (하나로 비상 보충수 공급계통의 노심 주입 냉각유량 해석)

  • Park Yong-Chul;Kim Bong-Soo;Kim Kyung-Ryun;Wu Jong-Sub
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.39-44
    • /
    • 2005
  • In HANARO, a multi-purpose research reactor of 30 MWth, the emergency water supply system consists essentially of an emergency water storage tank located in the level of about thirteen meter (13 m) above the reactor core, a three inch ('3\%') diameter water injection pipe line including injection valves from the tank to the reactor cooling inlet pipe and a test loop to do periodic system performance test. When the water level of the reactor pool comes down to the extremely low due to a loss of reactor pool water accident the emergency water stored in the tank should be fed to the core by the gravity force and at that time the design flow rate is eleven point four kilogram per second (11.4 kg/s). But it is impossible periodically to measure the injection flow rate under the emergency condition because the normal water level should be maintained during the reactor operation. This paper describes a flow network analysis to simulate the flow rate under the emergency condition. As results, it was confirmed through the analysis results that the calculated flow rate agrees with the design requirement under the emergency condition.

  • PDF

High Aperture Efficiency nat Antenna using Annular Ring Resonators and Radial Waveguide feeder Network (환상형 공진기와 방사형 도파관 급전구조를 이용한 고효율 평면안테나에 관한 연구)

  • Jeong, Ki-Hyeok;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8A
    • /
    • pp.688-696
    • /
    • 2005
  • An antenna was designed and manufactured for the DBS receiver system. This antenna is a planar or flat antenna which shows many advantages over the conventional parabolic antenna such as higher aperture efficiency, easier installation and improved aesthetics to name a few. The antenna is a novel design employing microstrip annular ring resonating antenna elements and a radial waveguide feeder network. The LNB(Low Noise Blockdown Converter) is can integrate with the antenna iしt the back of the radial waveguide. The 35cm diameter antenna works at 31.8dBi minimum gain which implies an aperture efficiency of around $80\%$.

The effect of thickness and translucency of polymer-infiltrated ceramic-network material on degree of conversion of resin cements

  • Barutcigil, Kubilay;Buyukkaplan, Ulviye Sebnem
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.61-66
    • /
    • 2020
  • PURPOSE. The aim of the present study was to determine the degree of conversion of light- and dual-cured resin cements used in the cementation of all-ceramic restorations under different thicknesses of translucent (T) and high-translucent (HT) polymer-infiltrated ceramic-network (PICN) material. MATERIALS AND METHODS. T and HT PICN blocks were prepared at 0.5, 1.0, 1.5, and 2.0 mm thicknesses (n=80). Resin cement samples were prepared with a diameter of 6 mm and a thickness of 100 ㎛. Light-cured resin cement was polymerized for 30 seconds, and dual-cure resin cement was polymerized for 20 seconds (n=180). Fourier transform infrared spectroscopy (FTIR) was used for degree of conversion measurements. The obtained data were analyzed with ANOVA and Tukey HSD, and independent t-test. RESULTS. As a result of FTIR analysis, the degree of conversion of the light-cured resin cement prepared under 1.5- and 2.0-mm-thick T and HT ceramics was found to be lower than that of the control group. Regarding the degree of conversion of the dual-cured resin cement group, there was no significant difference from the control group. CONCLUSION. Within the limitation of present study, it can be concluded that using of dual cure resin cement can be suggested for cementation of PICN material, especially for thicknesses of 1.5 mm and above.

Conncetiveity of X-Hypercubes and Its Applications (X-Hypercubes의 연결성과 그 응용)

  • Gwon, Gyeong-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.1
    • /
    • pp.92-98
    • /
    • 1994
  • The hypercube-like interconncetion network,X-hypercubes,has the same number of nodes and edges as conventional hypercubes.By slightly changing the interconneton way between nodes,however,X-hypercubes reduces the diameter by almost half.Thus the communication delay in X-hypercubes can be expected to be much lower than that in hypercubes. This paper gives a new definition of X-hypercubes establishing clear-cut condition of connection between two nodes.As appliction examples of the new definition,this paper presents simple embeddings of hypercubes in X-hypercubes and vice versa.This means that any programs written for hypercubes can be transported onto X-hypercubes and vice versa with minimal overhead.This paper also present bitonic merge sort for X-hypercubes by simulation that for hypercubes.

  • PDF

An Evaluation of the Performance of Wireless Network in Vehicle Communication Environment (차량 간 통신환경에서의 무선네트워크 성능 측정 및 분석)

  • Kim, Seung-Cheon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.816-822
    • /
    • 2011
  • This paper provides the performance measurement and analysis of Wireless LAN IEEE 802.11 in a mobile environment. The performance of IEEE802.11b/g and IEEE802.11p that is designed for Vehicle-to-Vehicle(V2V) communication is measured and analyzed. Diameter of communication, link access time and delay are measured as vehicle's speed varies. Also, the performance is checked in a situation that the load to network varies. In conclusion, the futher research topics are discussed.

A Distributed Peer Selection Method for Supporting Scalable Peer-to-Peer Services (확장성 있는 Peer-to-Peer 서비스 제공을 위한 분산적 피어 선택 기법)

  • Park, Jaesung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.11
    • /
    • pp.471-474
    • /
    • 2013
  • In this paper, we propose a distributed parent peer selection method to construct an efficient peer-to-peer(P2P) network topology by considering the capacity of a peer and the hop distance from a data source to the peer. To achieve this goal, we propose a method to combine the two performance metrics to calculate the probability that a peer becomes a parent peer. Using the probability, we propose a method to select a parent peer stochastically by making use of the state information of the neighboring peers that each peer maintains. Through simulation studies, we show that the proposed method drives high capacity peers to support more children peers and makes the diameter of the P2P network shorter than the other methods.

A Monochromatic Soft X-ray Generation from Femtosecond Laser-produced Plasma with Aluminum

  • Son, Joon-Gon;Hwang, Byung-Jun;Seo, Okkyun;Kim, Jae Myung;Noh, Do Young;Ko, Do-Kyeong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1834-1839
    • /
    • 2018
  • A tabletop ultrafast soft x-ray has been generated from the laser-produce plasma with a femtosecond pulsed Ti:Sapphire laser. The estimated total flux of Al $K{\alpha}$ is of $2.2{\times}10^9photons/sec$ in $4{\pi}$ radian and the parameters related to the optical performance were obtained. The tungsten/silicon multilayer, flat quartz and bent thallium acid phthalate (TLAP) crystal were used for monochromatization of soft x-ray to refine the aluminum $K{\alpha}$ radiation and compared the respective value of $E/{\Delta}E$. To estimate the size of the x-ray source beam generated by a fs laser, the approximation using the FWHM obtained from the x-ray beam scan near the focal point was discussed, and the size of the diameter was about $9.76{\mu}m$.

Modeling of AA5052 Sheet Incremental Sheet Forming Process Using RSM-BPNN and Multi-optimization Using Genetic Algorithms (반응표면법-역전파신경망을 이용한 AA5052 판재 점진성형 공정변수 모델링 및 유전 알고리즘을 이용한 다목적 최적화)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.125-133
    • /
    • 2021
  • In this study, response surface method (RSM), back propagation neural network (BPNN), and genetic algorithm (GA) were used for modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goal of optimization is to determine the maximum forming angle and minimum surface roughness, while varying the production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model and BPNN model to model the variations in the forming angle and surface roughness based on variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process the GA. The results showed that RSM and BPNN can be effectively used to control the forming angle and surface roughness. The optimized Pareto front produced by the GA can be utilized as a rational design guide for practical applications of AA5052 in the ISF process

Machine learning techniques for prediction of ultimate strain of FRP-confined concrete

  • Tijani, Ibrahim A.;Lawal, Abiodun I.;Kwon, S.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.101-111
    • /
    • 2022
  • It is widely known that axially loaded fiber-reinforced polymer (FRP) confined concrete presents significant and enhanced mechanical properties with reference to the unconfined concrete. Therefore, to predict the mechanical behavior of FRP-confined concrete two quantities-peak strength and ultimate strain are required. Despite the significant advances, the determination of the ultimate strain of FRP-confined concrete is one of the most challenging problems to be resolved. This is often attributed to our persistence in desiring the conventional methods as the sole technique to examine this phenomenon and the complex nature of the ultimate strain of FRP-confined concrete. To bridge the research gap, this study adopted two machine learning (ML) techniques-artificial neural network (ANN) and Gaussian process regression (GPR)-to analyze observations obtained from 627 datasets of FRP-confined concrete circular and non-circular sections under axial loading test. Besides, the techniques are also used to predict the ultimate strain of FRP-confined concrete. Seven parameters namely width/diameter of the specimens, corner radius ratio, the strength of concrete, FRP elastic modulus, FRP thickness, FRP tensile rupture strain, and the axial strain of unconfined concrete-are the input parameters used to predict the ultimate strain of FRP-confined concrete. The results of the current study highlight the merit of using AI techniques in structural engineering applications given their extraordinary ability to comprehend multidimensional phenomena of FRP-confined concrete structures with ease, low computational cost, and high performance over the existing empirical models.

Using ANN to predict post-heating mechanical properties of cementitious composites reinforced with multi-scale additives

  • Almashaqbeh, Hashem K.;Irshidat, Mohammad R.;Najjar, Yacoub
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.337-350
    • /
    • 2022
  • This paper focuses on predicting the post-heating mechanical properties of cementitious composites reinforced with multi-scale additives using the Artificial Neural Network (ANN) approach. A total of four different feed-forward ANN models are developed using 261 data sets collected from 18 published sources. The models are optimized using 12 input parameters selected based on a comprehensive literature review to predict the residual compressive strength, the residual flexural strengths, elastic modulus, and fracture energy of heat-damaged cementitious specimens. Furthermore, the ANN is employed to predict the impact of several variables including; the content of polypropylene (PP) microfibers and carbon nanotubes (CNTs) used in the concrete, mortar, or paste mix design, length of PP fibers, the average diameter of CNTs, and the average length of CNTs. The influence of the studied parameters is investigated at different heating levels ranged from 25℃ to 800℃. The results demonstrate that the developed ANN models have a strong potential for predicting the mechanical properties of the heated cementitious composites based on the mixing ingredients in addition to the heating conditions.